Intel® Xeon® Processor X3323

6M Cache, 2.50 GHz, 1333 MHz FSB

Specifications

Performance Specifications

Supplemental Information

Package Specifications

  • Processing Die Size 164 mm2
  • # of Processing Die Transistors 456 million

Compatible Products

Intel® Server System SR1000SH Family

Product Name Launch Date Marketing Status Chassis Form Factor Socket Sort Order Compare
All | None
Intel® Server System SR1530SH Q3'07 Discontinued 1U Rack LGA775 66828

Intel® 5000 Series Chipsets

Product Name PCI Express Revision TDP Sort Order Compare
All | None
Intel® 5100 Memory Controller 1.1 25.7 W 69370

Drivers and Software

Latest Drivers & Software

Downloads Available:
All

Name

Support

Processor Number

The Intel processor number is just one of several factors—along with processor brand, system configurations, and system-level benchmarks—to be considered when choosing the right processor for your computing needs. Read more about interpreting Intel® processor numbers or Intel® processor numbers for the Data Center.

Lithography

Lithography refers to the semiconductor technology used to manufacture an integrated circuit, and is reported in nanometer (nm), indicative of the size of features built on the semiconductor.

Total Cores

Cores is a hardware term that describes the number of independent central processing units in a single computing component (die or chip).

Processor Base Frequency

Processor Base Frequency describes the rate at which the processor's transistors open and close. The processor base frequency is the operating point where TDP is defined. Frequency is typically measured in gigahertz (GHz), or billion cycles per second.

For more details regarding the dynamic power and frequency operating range, refer to

Cache

CPU Cache is an area of fast memory located on the processor. Intel® Smart Cache refers to the architecture that allows all cores to dynamically share access to the last level cache.

Bus Speed

A bus is a subsystem that transfers data between computer components or between computers. Types include front-side bus (FSB), which carries data between the CPU and memory controller hub; direct media interface (DMI), which is a point-to-point interconnection between an Intel integrated memory controller and an Intel I/O controller hub on the computer’s motherboard; and Quick Path Interconnect (QPI), which is a point-to-point interconnect between the CPU and the integrated memory controller.

FSB Parity

FSB parity provides error checking on data sent on the FSB (Front Side Bus).

TDP

Thermal Design Power (TDP) represents the average power, in watts, the processor dissipates when operating at Base Frequency with all cores active under an Intel-defined, high-complexity workload. Refer to Datasheet for thermal solution requirements.

Servicing Status

Intel Servicing provides functional and security updates for Intel processors or platforms, typically utilizing the Intel Platform Update (IPU).

See "Changes in Customer Support and Servicing Updates for Select Intel® Processors" for more information on servicing.

Embedded Options Available

“Embedded Options Available” indicates the SKU is typically available for purchase for 7 years from the launch of the first SKU in the Product family and may be available for purchase for a longer period of time under certain circumstances. Intel does not commit or guarantee product Availability or Technical Support by way of roadmap guidance. Intel reserves the right to change roadmaps or discontinue products, software and software support services through standard EOL/PDN processes. Product certification and use condition information can be found in the Production Release Qualification (PRQ) report for this SKU. Contact your Intel representative for details.

Intel® Turbo Boost Technology

Intel® Turbo Boost Technology dynamically increases the processor's frequency as needed by taking advantage of thermal and power headroom to give you a burst of speed when you need it, and increased energy efficiency when you don’t.

Intel® Hyper-Threading Technology

Intel® Hyper-Threading Technology (Intel® HT Technology) delivers two processing threads per physical core. Highly threaded applications can get more work done in parallel, completing tasks sooner.

Intel® Virtualization Technology (VT-x)

Intel® Virtualization Technology (VT-x) allows one hardware platform to function as multiple “virtual” platforms. It offers improved manageability by limiting downtime and maintaining productivity by isolating computing activities into separate partitions.

Intel® VT-x with Extended Page Tables (EPT)

Intel® VT-x with Extended Page Tables (EPT), also known as Second Level Address Translation (SLAT), provides acceleration for memory intensive virtualized applications. Extended Page Tables in Intel® Virtualization Technology platforms reduces the memory and power overhead costs and increases battery life through hardware optimization of page table management.

Intel® 64

Intel® 64 architecture delivers 64-bit computing on server, workstation, desktop and mobile platforms when combined with supporting software.¹ Intel 64 architecture improves performance by allowing systems to address more than 4 GB of both virtual and physical memory.

Instruction Set

An instruction set refers to the basic set of commands and instructions that a microprocessor understands and can carry out. The value shown represents which Intel’s instruction set this processor is compatible with.

Enhanced Intel SpeedStep® Technology

Enhanced Intel SpeedStep® Technology is an advanced means of enabling high performance while meeting the power-conservation needs of mobile systems. Conventional Intel SpeedStep® Technology switches both voltage and frequency in tandem between high and low levels in response to processor load. Enhanced Intel SpeedStep® Technology builds upon that architecture using design strategies such as Separation between Voltage and Frequency Changes, and Clock Partitioning and Recovery.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology for safer computing is a versatile set of hardware extensions to Intel® processors and chipsets that enhance the digital office platform with security capabilities such as measured launch and protected execution. It enables an environment where applications can run within their own space, protected from all other software on the system.

Execute Disable Bit

Execute Disable Bit is a hardware-based security feature that can reduce exposure to viruses and malicious-code attacks and prevent harmful software from executing and propagating on the server or network.