Intel® Xeon® w9-3475X Processor

82.5M Cache, 2.20 GHz

Specifications

CPU Specifications

Supplemental Information

Expansion Options

Package Specifications

  • Sockets Supported FCLGA4677
  • Package Carrier E1A
  • Max CPU Configuration 1
  • DTS Max 95 °C
  • TCASE 74
  • Package Size 77.5mm x 56.5mm

Advanced Technologies

Security & Reliability

Ordering and Compliance

Ordering and spec information

Intel® Xeon® w9-3475X Processor (82.5M Cache, 2.20 GHz) FC-LGA16A, Tray

  • MM# 99C19G
  • Spec Code SRM30
  • Ordering Code PK8071305081600
  • Shipping Media TRAY
  • Stepping E5
  • MDDS Content IDs 768900
  • PCN Content IDs 798714

Boxed Intel® Xeon® w9-3475X Processor (82.5M Cache, 2.20 GHz) FC-LGA16A

Boxed Intel® Xeon® w9-3475X Processor (82.5M Cache, 2.20 GHz) FC-LGA16A

Trade compliance information

  • ECCN 5A992C
  • CCATS G180729
  • US HTS 8542310001

Compatible Products

Intel® 700 Series Desktop Chipsets

Product Name Supports Overclocking PCI Express Revision USB Revision Sort Order Compare
All | None
Intel® W790 Chipset Yes 3.0, 4.0 3.2, 2.0 67179

Drivers and Software

Latest Drivers & Software

Downloads Available:
All

Name

Intel® Extreme Tuning Utility (Intel® XTU)

Support

Processor Number

The Intel processor number is just one of several factors—along with processor brand, system configurations, and system-level benchmarks—to be considered when choosing the right processor for your computing needs. Read more about interpreting Intel® processor numbers or Intel® processor numbers for the Data Center.

Lithography

Lithography refers to the semiconductor technology used to manufacture an integrated circuit, and is reported in nanometer (nm), indicative of the size of features built on the semiconductor.

Total Cores

Cores is a hardware term that describes the number of independent central processing units in a single computing component (die or chip).

Total Threads

Where applicable, Intel® Hyper-Threading Technology is only available on Performance-cores.

Max Turbo Frequency

Max Turbo Frequency is the maximum single-core frequency at which the processor is capable of operating using Intel® Turbo Boost Technology and, if present, Intel® Turbo Boost Max Technology 3.0 and Intel® Thermal Velocity Boost. Frequency is typically measured in gigahertz (GHz), or billion cycles per second.

For more details regarding the dynamic power and frequency operating range, refer to Performance Proxy Frequently Asked Questions (FAQs) for Intel® Processors.

Intel® Turbo Boost Max Technology 3.0 Frequency

Intel® Turbo Boost Max Technology 3.0 identifies the best performing core(s) on a processor and provides increased performance on those cores through increasing frequency as needed by taking advantage of power and thermal headroom. Intel® Turbo Boost Max Technology 3.0 frequency is the clock frequency of the CPU when running in this mode.

For more details regarding the dynamic power and frequency operating range, refer to Performance Proxy Frequently Asked Questions (FAQs) for Intel® Processors.

Intel® Turbo Boost Technology 2.0 Frequency

Intel® Turbo Boost Technology 2.0 Frequency is the maximum single core frequency at which the processor is capable of operating using Intel® Turbo Boost Technology. Frequency is typically measured in gigahertz (GHz), or billion cycles per second.

For more details regarding the dynamic power and frequency operating range, refer to Performance Proxy Frequently Asked Questions (FAQs) for Intel® Processors.

Processor Base Frequency

Processor Base Frequency describes the rate at which the processor's transistors open and close. The processor base frequency is the operating point where TDP is defined. Frequency is typically measured in gigahertz (GHz), or billion cycles per second.

For more details regarding the dynamic power and frequency operating range, refer to

Cache

CPU Cache is an area of fast memory located on the processor. Intel® Smart Cache refers to the architecture that allows all cores to dynamically share access to the last level cache.

Processor Base Power

The time-averaged power dissipation that the processor is validated to not exceed during manufacturing while executing an Intel-specified high complexity workload at Base Frequency and at the junction temperature as specified in the Datasheet for the SKU segment and configuration.

Maximum Turbo Power

The maximum sustained (>1s) power dissipation of the processor as limited by current and/or temperature controls. Instantaneous power may exceed Maximum Turbo Power for short durations (<=10ms). Note: Maximum Turbo Power is configurable by system vendor and can be system specific.

Launch Date

The date the product was first introduced.

Embedded Options Available

“Embedded Options Available” indicates the SKU is typically available for purchase for 7 years from the launch of the first SKU in the Product family and may be available for purchase for a longer period of time under certain circumstances. Intel does not commit or guarantee product Availability or Technical Support by way of roadmap guidance. Intel reserves the right to change roadmaps or discontinue products, software and software support services through standard EOL/PDN processes. Product certification and use condition information can be found in the Production Release Qualification (PRQ) report for this SKU. Contact your Intel representative for details.

Use Conditions

Use conditions are the environmental and operating conditions derived from the context of system use.
For SKU specific use condition information, see PRQ report.
For current use condition information, see Intel UC (CNDA site)*.

Max Memory Size (dependent on memory type)

Max memory size refers to the maximum memory capacity supported by the processor.

Memory Types

Intel® processors come in four different types: Single Channel, Dual Channel, Triple Channel, and Flex Mode. Maximum supported memory speed may be lower when populating multiple DIMMs per channel on products that support multiple memory channels.

Max # of Memory Channels

The number of memory channels refers to the bandwidth operation for real world application.

Intel® Optane™ Persistent Memory Supported

Intel® Optane™ persistent memory is a revolutionary tier of non-volatile memory that sits between memory and storage to provide large, affordable memory capacity that is comparable to DRAM performance.  Delivering large system-level memory capacity when combined with traditional DRAM, Intel Optane persistent memory is helping transform critical memory constrained workloads – from cloud, databases, in-memory analytics, virtualization, and content delivery networks.

ECC Memory Supported

ECC Memory Supported indicates processor support for Error-Correcting Code memory. ECC memory is a type of system memory that can detect and correct common kinds of internal data corruption. Note that ECC memory support requires both processor and chipset support.

PCI Express Revision

PCI Express Revision is the supported version of the PCI Express standard. Peripheral Component Interconnect Express (or PCIe) is a high-speed serial computer expansion bus standard for attaching hardware devices to a computer. The different PCI Express versions support different data rates.

Max # of PCI Express Lanes

A PCI Express (PCIe) lane consists of two differential signaling pairs, one for receiving data, one for transmitting data, and is the basic unit of the PCIe bus. Max # of PCI Express Lanes is the total number of supported lanes.

Sockets Supported

The socket is the component that provides the mechanical and electrical connections between the processor and motherboard.

TCASE

Case Temperature is the maximum temperature allowed at the processor Integrated Heat Spreader (IHS).

Intel® Deep Learning Boost (Intel® DL Boost) on CPU

A new set of embedded processor technologies designed to accelerate AI deep learning use cases. It extends Intel AVX-512 with a new Vector Neural Network Instruction (VNNI) that significantly increases deep learning inference performance over previous generations.

Intel® Resource Director Technology (Intel® RDT)

Intel® RDT brings new levels of visibility and control over how shared resources such as last-level cache (LLC) and memory bandwidth are used by applications, virtual machines (VMs) and containers.

Intel® Speed Shift Technology

Intel® Speed Shift Technology uses hardware-controlled P-states to deliver dramatically quicker responsiveness with single-threaded, transient (short duration) workloads, such as web browsing, by allowing the processor to more quickly select its best operating frequency and voltage for optimal performance and power efficiency.

Intel® Turbo Boost Max Technology 3.0

Intel® Turbo Boost Max Technology 3.0 identifies the best performing core(s) on a processor and provides increased performance on those cores through increasing frequency as needed by taking advantage of power and thermal headroom.

Intel® Turbo Boost Technology

Intel® Turbo Boost Technology dynamically increases the processor's frequency as needed by taking advantage of thermal and power headroom to give you a burst of speed when you need it, and increased energy efficiency when you don’t.

Intel® Hyper-Threading Technology

Intel® Hyper-Threading Technology (Intel® HT Technology) delivers two processing threads per physical core. Highly threaded applications can get more work done in parallel, completing tasks sooner.

Intel® Transactional Synchronization Extensions

Intel® Transactional Synchronization Extensions (Intel® TSX) are a set of instructions that add hardware transactional memory support to improve performance of multi-threaded software.

Intel® 64

Intel® 64 architecture delivers 64-bit computing on server, workstation, desktop and mobile platforms when combined with supporting software.¹ Intel 64 architecture improves performance by allowing systems to address more than 4 GB of both virtual and physical memory.

Instruction Set

An instruction set refers to the basic set of commands and instructions that a microprocessor understands and can carry out. The value shown represents which Intel’s instruction set this processor is compatible with.

Instruction Set Extensions

Instruction Set Extensions are additional instructions which can increase performance when the same operations are performed on multiple data objects. These can include SSE (Streaming SIMD Extensions) and AVX (Advanced Vector Extensions).

# of AVX-512 FMA Units

Intel® Advanced Vector Extensions 512 (AVX-512), new instruction set extensions, delivering ultra-wide (512-bit) vector operations capabilities, with up to 2 FMAs (Fused Multiply Add instructions), to accelerate performance for your most demanding computational tasks.

Enhanced Intel SpeedStep® Technology

Enhanced Intel SpeedStep® Technology is an advanced means of enabling high performance while meeting the power-conservation needs of mobile systems. Conventional Intel SpeedStep® Technology switches both voltage and frequency in tandem between high and low levels in response to processor load. Enhanced Intel SpeedStep® Technology builds upon that architecture using design strategies such as Separation between Voltage and Frequency Changes, and Clock Partitioning and Recovery.

Intel vPro® Eligibility

The Intel vPro® platform is a set of hardware and technologies used to build business computing endpoints with premium performance, built-in security, modern manageability, and platform stability. The launch of 12th Gen Intel® Core™ processors introduced Intel vPro® Enterprise and Intel vPro® Essentials branding.

  • Intel vPro® Enterprise: Commercial platform offering the full set of security, manageability, and stability features for any given Intel processor generation, including Intel® Active Management Technology
  • Intel vPro® Essentials: Commercial platform offering a subset of Intel vPro® Enterprise features, including Intel® Hardware Shield and Intel® Standard Manageability

Intel® Active Management Technology (AMT)

Intel® AMT is the manageability solution for Intel vPro® Enterprise platforms and provides remote out-of-band management for efficient proactive and reactive system maintenance over Ethernet or Wi-Fi connections and is a superset of Intel® Standard Manageability features.

Intel® Control-Flow Enforcement Technology

CET - Intel Control-flow Enforcement Technology (CET) helps protect against the misuse of legitimate code snippets through return-oriented programming (ROP) control-flow hijacking attacks.

Intel® Total Memory Encryption

TME – Total Memory Encryption (TME) helps protect data against exposure via physical attack on memory, such as cold-boot attacks.

Intel® AES New Instructions

Intel® AES New Instructions (Intel® AES-NI) are a set of instructions that enable fast and secure data encryption and decryption. AES-NI are valuable for a wide range of cryptographic applications, for example: applications that perform bulk encryption/decryption, authentication, random number generation, and authenticated encryption.

Intel® Software Guard Extensions (Intel® SGX)

Intel® Software Guard Extensions (Intel® SGX) provide applications the ability to create hardware enforced trusted execution protection for their applications’ sensitive routines and data. Intel® SGX provides developers a way to partition their code and data into CPU hardened trusted execution environments (TEE’s).

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology for safer computing is a versatile set of hardware extensions to Intel® processors and chipsets that enhance the digital office platform with security capabilities such as measured launch and protected execution. It enables an environment where applications can run within their own space, protected from all other software on the system.

Execute Disable Bit

Execute Disable Bit is a hardware-based security feature that can reduce exposure to viruses and malicious-code attacks and prevent harmful software from executing and propagating on the server or network.

Intel® Boot Guard

Intel® Device Protection Technology with Boot Guard helps protect the system’s pre-OS environment from viruses and malicious software attacks.

Mode-based Execute Control (MBEC)

Mode-based Execute Control can more reliably verify and enforce the integrity of kernel level code.

Intel® Virtualization Technology (VT-x)

Intel® Virtualization Technology (VT-x) allows one hardware platform to function as multiple “virtual” platforms. It offers improved manageability by limiting downtime and maintaining productivity by isolating computing activities into separate partitions.

Intel® Virtualization Technology for Directed I/O (VT-d)

Intel® Virtualization Technology for Directed I/O (VT-d) continues from the existing support for IA-32 (VT-x) and Itanium® processor (VT-i) virtualization adding new support for I/O-device virtualization. Intel VT-d can help end users improve security and reliability of the systems and also improve performance of I/O devices in virtualized environments.

Intel® VT-x with Extended Page Tables (EPT)

Intel® VT-x with Extended Page Tables (EPT), also known as Second Level Address Translation (SLAT), provides acceleration for memory intensive virtualized applications. Extended Page Tables in Intel® Virtualization Technology platforms reduces the memory and power overhead costs and increases battery life through hardware optimization of page table management.

Tray Processor

Intel ships these processors to Original Equipment Manufacturers (OEMs), and the OEMs typically pre-install the processor. Intel refers to these processors as tray or OEM processors. Intel doesn't provide direct warranty support. Contact your OEM or reseller for warranty support.

Boxed Processor

Intel Authorized Distributors sell Intel processors in clearly marked boxes from Intel. We refer to these processors as boxed processors. They typically carry a three-year warranty.

Boxed Processor

Intel Authorized Distributors sell Intel processors in clearly marked boxes from Intel. We refer to these processors as boxed processors. They typically carry a three-year warranty.