Intel® Pentium® Processor 6805

4M Cache, up to 3.00 GHz

Specifications

CPU Specifications

Supplemental Information

GPU Specifications

Package Specifications

Ordering and Compliance

Retired and discontinued

Intel® Pentium® Processor 6805 (4M Cache, up to 3.00 GHz) FC-BGA16F, Tray

  • MM# 99A3JC
  • Spec Code SRK0U
  • Ordering Code FJ8068904310016
  • Shipping Media TRAY
  • Stepping D1
  • MDDS Content IDs 807881
  • PCN Content IDs 807881

Trade compliance information

  • ECCN 5A992C
  • CCATS G167599
  • US HTS 8542310050

Drivers and Software

Latest Drivers & Software

Downloads Available:
All

Name

Support

Processor Number

The Intel processor number is just one of several factors—along with processor brand, system configurations, and system-level benchmarks—to be considered when choosing the right processor for your computing needs. Read more about interpreting Intel® processor numbers or Intel® processor numbers for the Data Center.

Lithography

Lithography refers to the semiconductor technology used to manufacture an integrated circuit, and is reported in nanometer (nm), indicative of the size of features built on the semiconductor.

Total Cores

Cores is a hardware term that describes the number of independent central processing units in a single computing component (die or chip).

Total Threads

Where applicable, Intel® Hyper-Threading Technology is only available on Performance-cores.

Max Turbo Frequency

Max Turbo Frequency is the maximum single-core frequency at which the processor is capable of operating using Intel® Turbo Boost Technology and, if present, Intel® Turbo Boost Max Technology 3.0 and Intel® Thermal Velocity Boost. Frequency is typically measured in gigahertz (GHz), or billion cycles per second.

For more details regarding the dynamic power and frequency operating range, refer to Performance Proxy Frequently Asked Questions (FAQs) for Intel® Processors.

Burst Frequency

Burst frequency is the maximum single core frequency at which the processor is capable of operating. Frequency is typically measured in gigahertz (GHz), or billion cycles per second.

For more details regarding the dynamic power and frequency operating range, refer to Performance Proxy Frequently Asked Questions (FAQs) for Intel® Processors.

Processor Base Frequency

Processor Base Frequency describes the rate at which the processor's transistors open and close. The processor base frequency is the operating point where TDP is defined. Frequency is typically measured in gigahertz (GHz), or billion cycles per second.

For more details regarding the dynamic power and frequency operating range, refer to

Cache

CPU Cache is an area of fast memory located on the processor. Intel® Smart Cache refers to the architecture that allows all cores to dynamically share access to the last level cache.

TDP

Thermal Design Power (TDP) represents the average power, in watts, the processor dissipates when operating at Base Frequency with all cores active under an Intel-defined, high-complexity workload. Refer to Datasheet for thermal solution requirements.

Launch Date

The date the product was first introduced.

Embedded Options Available

“Embedded Options Available” indicates the SKU is typically available for purchase for 7 years from the launch of the first SKU in the Product family and may be available for purchase for a longer period of time under certain circumstances. Intel does not commit or guarantee product Availability or Technical Support by way of roadmap guidance. Intel reserves the right to change roadmaps or discontinue products, software and software support services through standard EOL/PDN processes. Product certification and use condition information can be found in the Production Release Qualification (PRQ) report for this SKU. Contact your Intel representative for details.

Use Conditions

Use conditions are the environmental and operating conditions derived from the context of system use.
For SKU specific use condition information, see PRQ report.
For current use condition information, see Intel UC (CNDA site)*.

Max Memory Size (dependent on memory type)

Max memory size refers to the maximum memory capacity supported by the processor.

Memory Types

Intel® processors come in four different types: Single Channel, Dual Channel, Triple Channel, and Flex Mode. Maximum supported memory speed may be lower when populating multiple DIMMs per channel on products that support multiple memory channels.

Max # of Memory Channels

The number of memory channels refers to the bandwidth operation for real world application.

ECC Memory Supported

ECC Memory Supported indicates processor support for Error-Correcting Code memory. ECC memory is a type of system memory that can detect and correct common kinds of internal data corruption. Note that ECC memory support requires both processor and chipset support.

GPU Name

Processor Graphics indicates graphics processing circuitry integrated into the processor, providing the graphics, compute, media, and display capabilities.

Intel® Arc™ graphics only available on select V-Series Intel® Core™ Ultra processor-powered systems with qualifying system thermal design or H-series Intel® Core™ Ultra processor-powered systems with at least 16GB of system memory in a dual-channel configuration. OEM enablement required. Other Intel® Core™ Ultra processor-powered system configurations feature Intel® Graphics. Check with OEM or retailer for system configuration details.

Intel® Iris® Xe Graphics only: to use the Intel® Iris® Xe brand, the system must be populated with 128-bit (dual channel) memory. Otherwise, use the Intel® UHD brand.

Graphics Base Frequency

Graphics Base frequency refers to the rated/guaranteed graphics render clock frequency in MHz.

For more details regarding the dynamic power and frequency operating range, refer to Performance Proxy Frequently Asked Questions (FAQs) for Intel® Processors.

Graphics Burst Frequency

For more details regarding the dynamic power and frequency operating range, refer to Performance Proxy Frequently Asked Questions (FAQs) for Intel® Processors.

Graphics Max Dynamic Frequency

Graphics max dynamic frequency refers to the maximum opportunistic graphics render clock frequency (in MHz) that can be supported using Intel® HD Graphics with Dynamic Frequency feature.

For more details regarding the dynamic power and frequency operating range, refer to Performance Proxy Frequently Asked Questions (FAQs) for Intel® Processors.

Execution Units

The Execution Unit is the foundational building block of Intel’s graphics architecture. Execution Units are compute processors optimized for simultaneous Multi-Threading for high throughput compute power.

Sockets Supported

The socket is the component that provides the mechanical and electrical connections between the processor and motherboard.

TJUNCTION

Junction Temperature is the maximum temperature allowed at the processor die.

Intel® Turbo Boost Technology

Intel® Turbo Boost Technology dynamically increases the processor's frequency as needed by taking advantage of thermal and power headroom to give you a burst of speed when you need it, and increased energy efficiency when you don’t.

Intel® Hyper-Threading Technology

Intel® Hyper-Threading Technology (Intel® HT Technology) delivers two processing threads per physical core. Highly threaded applications can get more work done in parallel, completing tasks sooner.

Intel® Transactional Synchronization Extensions

Intel® Transactional Synchronization Extensions (Intel® TSX) are a set of instructions that add hardware transactional memory support to improve performance of multi-threaded software.

Intel® 64

Intel® 64 architecture delivers 64-bit computing on server, workstation, desktop and mobile platforms when combined with supporting software.¹ Intel 64 architecture improves performance by allowing systems to address more than 4 GB of both virtual and physical memory.

Instruction Set

An instruction set refers to the basic set of commands and instructions that a microprocessor understands and can carry out. The value shown represents which Intel’s instruction set this processor is compatible with.

Idle States

Idle States (C-states) are used to save power when the processor is idle. C0 is the operational state, meaning that the CPU is doing useful work. C1 is the first idle state, C2 the second, and so on, where more power saving actions are taken for numerically higher C-states.

Thermal Monitoring Technologies

Thermal Monitoring Technologies protect the processor package and the system from thermal failure through several thermal management features. An on-die Digital Thermal Sensor (DTS) detects the core's temperature, and the thermal management features reduce package power consumption and thereby temperature when required in order to remain within normal operating limits.

Intel® AES New Instructions

Intel® AES New Instructions (Intel® AES-NI) are a set of instructions that enable fast and secure data encryption and decryption. AES-NI are valuable for a wide range of cryptographic applications, for example: applications that perform bulk encryption/decryption, authentication, random number generation, and authenticated encryption.

Secure Key

Intel® Secure Key consists of a digital random number generator that creates truly random numbers to strengthen encryption algorithms.

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology for safer computing is a versatile set of hardware extensions to Intel® processors and chipsets that enhance the digital office platform with security capabilities such as measured launch and protected execution. It enables an environment where applications can run within their own space, protected from all other software on the system.

Execute Disable Bit

Execute Disable Bit is a hardware-based security feature that can reduce exposure to viruses and malicious-code attacks and prevent harmful software from executing and propagating on the server or network.

Intel® Stable IT Platform Program (SIPP)

The Intel® Stable IT Platform Program (Intel® SIPP) aims for zero changes to key platform components and drivers for at least 15 months or until the next generational release, reducing complexity for IT to effectively manage their computing endpoints.
Learn more about Intel® SIPP

Intel® Virtualization Technology (VT-x)

Intel® Virtualization Technology (VT-x) allows one hardware platform to function as multiple “virtual” platforms. It offers improved manageability by limiting downtime and maintaining productivity by isolating computing activities into separate partitions.

Intel® Virtualization Technology for Directed I/O (VT-d)

Intel® Virtualization Technology for Directed I/O (VT-d) continues from the existing support for IA-32 (VT-x) and Itanium® processor (VT-i) virtualization adding new support for I/O-device virtualization. Intel VT-d can help end users improve security and reliability of the systems and also improve performance of I/O devices in virtualized environments.

Intel® VT-x with Extended Page Tables (EPT)

Intel® VT-x with Extended Page Tables (EPT), also known as Second Level Address Translation (SLAT), provides acceleration for memory intensive virtualized applications. Extended Page Tables in Intel® Virtualization Technology platforms reduces the memory and power overhead costs and increases battery life through hardware optimization of page table management.

Tray Processor

Intel ships these processors to Original Equipment Manufacturers (OEMs), and the OEMs typically pre-install the processor. Intel refers to these processors as tray or OEM processors. Intel doesn't provide direct warranty support. Contact your OEM or reseller for warranty support.