Intel® Xeon® Gold 6328H Processor

Intel® Xeon® Gold 6328H Processor

22M Cache, 2.80 GHz
0 Retailers X

Specifications

CPU Specifications

Supplemental Information

Expansion Options

Package Specifications

Ordering and Compliance

Ordering and spec information

Intel® Xeon® Gold 6328H Processor (22M Cache, 2.80 GHz) FC-LGA14A, Tray

  • MM# 99A34C
  • Spec Code SRJXY
  • Ordering Code CD8070604481201
  • Shipping Media TRAY
  • Stepping A1

Trade compliance information

  • ECCN 5A992C
  • CCATS G077159
  • US HTS 8542310001

PCN/MDDS Information

SRJXY

Product Images

Product Images

Drivers and Software

Latest Drivers & Software

Downloads Available:
All

Name

Technical Documentation

Processor Number

The Intel processor number is just one of several factors—along with processor brand, system configurations, and system-level benchmarks—to be considered when choosing the right processor for your computing needs. Read more about interpreting Intel® processor numbers or Intel® processor numbers for the Data Center.

Launch Date

The date the product was first introduced.

# of Cores

Cores is a hardware term that describes the number of independent central processing units in a single computing component (die or chip).

# of Threads

A Thread, or thread of execution, is a software term for the basic ordered sequence of instructions that can be passed through or processed by a single CPU core.

Processor Base Frequency

Processor Base Frequency describes the rate at which the processor's transistors open and close. The processor base frequency is the operating point where TDP is defined. Frequency is typically measured in gigahertz (GHz), or billion cycles per second.

Max Turbo Frequency

Max turbo frequency is the maximum single core frequency at which the processor is capable of operating using Intel® Turbo Boost Technology and, if present, Intel® Thermal Velocity Boost. Frequency is typically measured in gigahertz (GHz), or billion cycles per second.

Cache

CPU Cache is an area of fast memory located on the processor. Intel® Smart Cache refers to the architecture that allows all cores to dynamically share access to the last level cache.

TDP

Thermal Design Power (TDP) represents the average power, in watts, the processor dissipates when operating at Base Frequency with all cores active under an Intel-defined, high-complexity workload. Refer to Datasheet for thermal solution requirements.

Embedded Options Available

Embedded Options Available indicates products that offer extended purchase availability for intelligent systems and embedded solutions. Product certification and use condition applications can be found in the Production Release Qualification (PRQ) report. See your Intel representative for details.

Max Memory Size (dependent on memory type)

Max memory size refers to the maximum memory capacity supported by the processor.

Memory Types

Intel® processors come in four different types: a Single Channel, Dual Channel, Triple Channel, and Flex Mode.

Max # of Memory Channels

The number of memory channels refers to the bandwidth operation for real world application.

Intel® Optane™ DC Persistent Memory Supported

Intel® Optane™ DC persistent memory is a revolutionary tier of non-volatile memory that sits between memory and storage to provide large, affordable memory capacity that is comparable to DRAM performance.  Delivering large system-level memory capacity when combined with traditional DRAM, Intel Optane DC persistent memory is helping transform critical memory constrained workloads – from cloud, databases, in-memory analytics, virtualization, and content delivery networks.

PCI Express Revision

PCI Express Revision is the supported version of the PCI Express standard. Peripheral Component Interconnect Express (or PCIe) is a high-speed serial computer expansion bus standard for attaching hardware devices to a computer. The different PCI Express versions support different data rates.

Max # of PCI Express Lanes

A PCI Express (PCIe) lane consists of two differential signaling pairs, one for receiving data, one for transmitting data, and is the basic unit of the PCIe bus. Max # of PCI Express Lanes is the total number of supported lanes.

Sockets Supported

The socket is the component that provides the mechanical and electrical connections between the processor and motherboard.

Intel® Deep Learning Boost (Intel® DL Boost)

A new set of embedded processor technologies designed to accelerate AI deep learning use cases. It extends Intel AVX-512 with a new Vector Neural Network Instruction (VNNI) that significantly increases deep learning inference performance over previous generations.

Intel® Resource Director Technology (Intel® RDT)

Intel® RDT brings new levels of visibility and control over how shared resources such as last-level cache (LLC) and memory bandwidth are used by applications, virtual machines (VMs) and containers.

Intel® Optane™ Memory Supported

Intel® Optane™ memory is a revolutionary new class of non-volatile memory that sits in between system memory and storage to accelerate system performance and responsiveness. When combined with the Intel® Rapid Storage Technology Driver, it seamlessly manages multiple tiers of storage while presenting one virtual drive to the OS, ensuring that data frequently used resides on the fastest tier of storage. Intel® Optane™ memory requires specific hardware and software configuration. Visit www.intel.com/OptaneMemory for configuration requirements.

Intel® Speed Shift Technology

Intel® Speed Shift Technology uses hardware-controlled P-states to deliver dramatically quicker responsiveness with single-threaded, transient (short duration) workloads, such as web browsing, by allowing the processor to more quickly select its best operating frequency and voltage for optimal performance and power efficiency.

Intel® Hyper-Threading Technology

Intel® Hyper-Threading Technology (Intel® HT Technology) delivers two processing threads per physical core. Highly threaded applications can get more work done in parallel, completing tasks sooner.

Intel® Virtualization Technology (VT-x)

Intel® Virtualization Technology (VT-x) allows one hardware platform to function as multiple “virtual” platforms. It offers improved manageability by limiting downtime and maintaining productivity by isolating computing activities into separate partitions.

Intel® Virtualization Technology for Directed I/O (VT-d)

Intel® Virtualization Technology for Directed I/O (VT-d) continues from the existing support for IA-32 (VT-x) and Itanium® processor (VT-i) virtualization adding new support for I/O-device virtualization. Intel VT-d can help end users improve security and reliability of the systems and also improve performance of I/O devices in virtualized environments.

Intel® VT-x with Extended Page Tables (EPT)

Intel® VT-x with Extended Page Tables (EPT), also known as Second Level Address Translation (SLAT), provides acceleration for memory intensive virtualized applications. Extended Page Tables in Intel® Virtualization Technology platforms reduces the memory and power overhead costs and increases battery life through hardware optimization of page table management.

Intel® Transactional Synchronization Extensions

Intel® Transactional Synchronization Extensions (Intel® TSX) are a set of instructions that add hardware transactional memory support to improve performance of multi-threaded software.

Intel® 64

Intel® 64 architecture delivers 64-bit computing on server, workstation, desktop and mobile platforms when combined with supporting software.¹ Intel 64 architecture improves performance by allowing systems to address more than 4 GB of both virtual and physical memory.

Instruction Set Extensions

Instruction Set Extensions are additional instructions which can increase performance when the same operations are performed on multiple data objects. These can include SSE (Streaming SIMD Extensions) and AVX (Advanced Vector Extensions).

# of AVX-512 FMA Units

Intel® Advanced Vector Extensions 512 (AVX-512), new instruction set extensions, delivering ultra-wide (512-bit) vector operations capabilities, with up to 2 FMAs (Fused Multiply Add instructions), to accelerate performance for your most demanding computational tasks.

Enhanced Intel SpeedStep® Technology

Enhanced Intel SpeedStep® Technology is an advanced means of enabling high performance while meeting the power-conservation needs of mobile systems. Conventional Intel SpeedStep® Technology switches both voltage and frequency in tandem between high and low levels in response to processor load. Enhanced Intel SpeedStep® Technology builds upon that architecture using design strategies such as Separation between Voltage and Frequency Changes, and Clock Partitioning and Recovery.

Intel® Volume Management Device (VMD)

Intel® Volume Management Device (VMD) provides a common, robust method of hot plug and LED management for NVMe-based solid state drives.

Intel® AES New Instructions

Intel® AES New Instructions (Intel® AES-NI) are a set of instructions that enable fast and secure data encryption and decryption. AES-NI are valuable for a wide range of cryptographic applications, for example: applications that perform bulk encryption/decryption, authentication, random number generation, and authenticated encryption.

Execute Disable Bit

Execute Disable Bit is a hardware-based security feature that can reduce exposure to viruses and malicious-code attacks and prevent harmful software from executing and propagating on the server or network.

Intel® Run Sure Technology

Intel® Run Sure Technology, includes advanced RAS (reliability, availability and serviceability) features that deliver high reliability and platform resiliency, to maximize uptime of servers running mission-critical workloads.

Mode-based Execute Control (MBE)

Mode-based Execute Control can more reliably verify and enforce the integrity of kernel level code.

Tray Processor

Intel ships these processors to Original Equipment Manufacturers (OEMs), and the OEMs typically pre-install the processor. Intel refers to these processors as tray or OEM processors. Intel doesn't provide direct warranty support. Contact your OEM or reseller for warranty support.