Intel Atom® Processor P5342

18M Cache, 2.2GHz

Specifications

CPU Specifications

Supplemental Information

Memory Specifications

I/O Specifications

Package Specifications

Ordering and Compliance

Ordering and spec information

Intel Atom® Processor P5342 (18M Cache, 2.2GHz) FC-BGA16B, Tray

  • MM# 99AM3R
  • Spec Code SRL3T
  • Ordering Code NN8069204099703
  • Shipping Media TRAY
  • Stepping C0
  • MDDS Content IDs 742627

Trade compliance information

  • ECCN 5A002R
  • CCATS G175230
  • US HTS 8542310001

PCN Information

SRL3T

Drivers and Software

Latest Drivers & Software

Downloads Available:
All

Name

Support

Processor Number

The Intel processor number is just one of several factors—along with processor brand, system configurations, and system-level benchmarks—to be considered when choosing the right processor for your computing needs. Read more about interpreting Intel® processor numbers or Intel® processor numbers for the Data Center.

Lithography

Lithography refers to the semiconductor technology used to manufacture an integrated circuit, and is reported in nanometer (nm), indicative of the size of features built on the semiconductor.

Total Threads

Where applicable, Intel® Hyper-Threading Technology is only available on Performance-cores.

Processor Base Frequency

Processor Base Frequency describes the rate at which the processor's transistors open and close. The processor base frequency is the operating point where TDP is defined. Frequency is typically measured in gigahertz (GHz), or billion cycles per second.

For more details regarding the dynamic power and frequency operating range, refer to

Cache

CPU Cache is an area of fast memory located on the processor. Intel® Smart Cache refers to the architecture that allows all cores to dynamically share access to the last level cache.

# of QPI Links

QPI (Quick Path Interconnect) links are a high speed, point-to-point interconnect bus between the processor and chipset.

TDP

Thermal Design Power (TDP) represents the average power, in watts, the processor dissipates when operating at Base Frequency with all cores active under an Intel-defined, high-complexity workload. Refer to Datasheet for thermal solution requirements.

Launch Date

The date the product was first introduced.

Embedded Options Available

“Embedded Options Available” indicates the SKU is typically available for purchase for 7 years from the launch of the first SKU in the Product family and may be available for purchase for a longer period of time under certain circumstances. Intel does not commit or guarantee product Availability or Technical Support by way of roadmap guidance. Intel reserves the right to change roadmaps or discontinue products, software and software support services through standard EOL/PDN processes. Product certification and use condition information can be found in the Production Release Qualification (PRQ) report for this SKU. Contact your Intel representative for details.

Use Conditions

Use conditions are the environmental and operating conditions derived from the context of system use.
For SKU specific use condition information, see PRQ report.
For current use condition information, see Intel UC (CNDA site)*.

Max Memory Size (dependent on memory type)

Max memory size refers to the maximum memory capacity supported by the processor.

Memory Types

Intel® processors come in four different types: Single Channel, Dual Channel, Triple Channel, and Flex Mode. Maximum supported memory speed may be lower when populating multiple DIMMs per channel on products that support multiple memory channels.

Max # of Memory Channels

The number of memory channels refers to the bandwidth operation for real world application.

ECC Memory Supported

ECC Memory Supported indicates processor support for Error-Correcting Code memory. ECC memory is a type of system memory that can detect and correct common kinds of internal data corruption. Note that ECC memory support requires both processor and chipset support.

PCI Express Revision

PCI Express Revision is the supported version of the PCI Express standard. Peripheral Component Interconnect Express (or PCIe) is a high-speed serial computer expansion bus standard for attaching hardware devices to a computer. The different PCI Express versions support different data rates.

Microprocessor PCIe Revision

Microprocessor PCIe Revision is the version supported by the processor for the PCIe lanes directly attached to the microprocessor. Peripheral Component Interconnect Express (or PCIe) is a high-speed serial computer expansion bus standard for attaching hardware devices to a computer. The different PCIe Express version support different data rates.

Chipset / PCH PCIe Revision

Chipset/PCH PCIe Revision is the version supported by the PCH for the PCIe lanes directly attached to the PCH. Peripheral Component Interconnect Express (or PCIe) is a high-speed serial computer expansion bus standard for attaching hardware devices to a computer. The different PCIe Express version support different data rates.

PCI Express Configurations

PCI Express (PCIe) Configurations describe the available PCIe lane configurations that can be used to link to PCIe devices.

Max # of PCI Express Lanes

A PCI Express (PCIe) lane consists of two differential signaling pairs, one for receiving data, one for transmitting data, and is the basic unit of the PCIe bus. Max # of PCI Express Lanes is the total number of supported lanes.

USB Revision

USB (Universal Serial Bus) is an industry standard connection technology for attaching peripheral devices to a computer.

Total # of SATA Ports

SATA (Serial Advanced Technology Attachment) is a high speed standard for connecting storage devices such as hard disk drives and optical drives to a motherboard.

Integrated LAN

Integrated LAN indicates the presence of an integrated Intel Ethernet MAC or presence of the LAN ports built into the system board.

Integrated IDE

IDE (Integrated Drive Electronics) is an interface standard for connecting storage devices, and indicates the drive controller is integrated into the drive, rather than a separate component on the motherboard.

Sockets Supported

The socket is the component that provides the mechanical and electrical connections between the processor and motherboard.

Intel® Resource Director Technology (Intel® RDT)

Intel® RDT brings new levels of visibility and control over how shared resources such as last-level cache (LLC) and memory bandwidth are used by applications, virtual machines (VMs) and containers.

Intel® Optane™ Memory Supported

Intel® Optane™ memory is a revolutionary new class of non-volatile memory that sits in between system memory and storage to accelerate system performance and responsiveness. When combined with the Intel® Rapid Storage Technology Driver, it seamlessly manages multiple tiers of storage while presenting one virtual drive to the OS, ensuring that data frequently used resides on the fastest tier of storage. Intel® Optane™ memory requires specific hardware and software configuration. Visit www.intel.com/OptaneMemory for configuration requirements.

Intel® Thermal Velocity Boost

Intel® Thermal Velocity Boost (Intel® TVB) is a feature that opportunistically and automatically increases clock frequency above single-core and multi-core Intel® Turbo Boost Technology frequencies based on how much the processor is operating below its maximum temperature and whether turbo power budget is available. The frequency gain and duration is dependent on the workload, capabilities of the processor and the processor cooling solution.

Intel® Turbo Boost Max Technology 3.0

Intel® Turbo Boost Max Technology 3.0 identifies the best performing core(s) on a processor and provides increased performance on those cores through increasing frequency as needed by taking advantage of power and thermal headroom.

Intel® Hyper-Threading Technology

Intel® Hyper-Threading Technology (Intel® HT Technology) delivers two processing threads per physical core. Highly threaded applications can get more work done in parallel, completing tasks sooner.

Intel® 64

Intel® 64 architecture delivers 64-bit computing on server, workstation, desktop and mobile platforms when combined with supporting software.¹ Intel 64 architecture improves performance by allowing systems to address more than 4 GB of both virtual and physical memory.

Instruction Set

An instruction set refers to the basic set of commands and instructions that a microprocessor understands and can carry out. The value shown represents which Intel’s instruction set this processor is compatible with.

Instruction Set Extensions

Instruction Set Extensions are additional instructions which can increase performance when the same operations are performed on multiple data objects. These can include SSE (Streaming SIMD Extensions) and AVX (Advanced Vector Extensions).

Idle States

Idle States (C-states) are used to save power when the processor is idle. C0 is the operational state, meaning that the CPU is doing useful work. C1 is the first idle state, C2 the second, and so on, where more power saving actions are taken for numerically higher C-states.

Enhanced Intel SpeedStep® Technology

Enhanced Intel SpeedStep® Technology is an advanced means of enabling high performance while meeting the power-conservation needs of mobile systems. Conventional Intel SpeedStep® Technology switches both voltage and frequency in tandem between high and low levels in response to processor load. Enhanced Intel SpeedStep® Technology builds upon that architecture using design strategies such as Separation between Voltage and Frequency Changes, and Clock Partitioning and Recovery.

Integrated Intel® QuickAssist Technology

Intel® QuickAssist Technology provides security and compression acceleration capabilities used to improve performance and efficiency across the data center.

Intel® Volume Management Device (VMD)

Intel® Volume Management Device (VMD) provides a common, robust method of hot plug and LED management for NVMe-based solid state drives.

Intel® AES New Instructions

Intel® AES New Instructions (Intel® AES-NI) are a set of instructions that enable fast and secure data encryption and decryption. AES-NI are valuable for a wide range of cryptographic applications, for example: applications that perform bulk encryption/decryption, authentication, random number generation, and authenticated encryption.

Secure Key

Intel® Secure Key consists of a digital random number generator that creates truly random numbers to strengthen encryption algorithms.

Intel® Software Guard Extensions (Intel® SGX)

Intel® Software Guard Extensions (Intel® SGX) provide applications the ability to create hardware enforced trusted execution protection for their applications’ sensitive routines and data. Intel® SGX provides developers a way to partition their code and data into CPU hardened trusted execution environments (TEE’s).

Intel® Trusted Execution Technology

Intel® Trusted Execution Technology for safer computing is a versatile set of hardware extensions to Intel® processors and chipsets that enhance the digital office platform with security capabilities such as measured launch and protected execution. It enables an environment where applications can run within their own space, protected from all other software on the system.

Execute Disable Bit

Execute Disable Bit is a hardware-based security feature that can reduce exposure to viruses and malicious-code attacks and prevent harmful software from executing and propagating on the server or network.

Intel® Boot Guard

Intel® Device Protection Technology with Boot Guard helps protect the system’s pre-OS environment from viruses and malicious software attacks.

Intel® Virtualization Technology (VT-x)

Intel® Virtualization Technology (VT-x) allows one hardware platform to function as multiple “virtual” platforms. It offers improved manageability by limiting downtime and maintaining productivity by isolating computing activities into separate partitions.

Intel® Virtualization Technology for Directed I/O (VT-d)

Intel® Virtualization Technology for Directed I/O (VT-d) continues from the existing support for IA-32 (VT-x) and Itanium® processor (VT-i) virtualization adding new support for I/O-device virtualization. Intel VT-d can help end users improve security and reliability of the systems and also improve performance of I/O devices in virtualized environments.

Tray Processor

Intel ships these processors to Original Equipment Manufacturers (OEMs), and the OEMs typically pre-install the processor. Intel refers to these processors as tray or OEM processors. Intel doesn't provide direct warranty support. Contact your OEM or reseller for warranty support.