Intel® Pentium® Silver Prozessor N6000

4 MB Cache, bis zu 3,30 GHz

Spezifikationen

Zusätzliche Informationen

Speicherspezifikationen

GPU Specifications

I/O-Spezifikationen

  • Anzahl der USB-Ports 14
  • USB-Version 2.0/3.2
  • Integriertes LAN Nein
  • Integriertes WLAN Intel® Wireless-AX MAC
  • Allzweck-IO Ja
  • UART Ja
  • Maximale Anzahl der SATA-6,0-Gbit/s-Ports 2

Package-Spezifikationen

Aufgabe von Bestellungen und Einhaltung von Vorschriften

Informationen zu Bestellungen und Spezifikationen

Intel® Pentium® Silver N6000 Processor (4M Cache, up to 3.30 GHz) FC-BGA16F, Tray

  • MM# 99A98L
  • Spec-Code SRKGY
  • Bestellbezeichnung DC8069704609905
  • Transportverpackungen TRAY
  • Stepping A1
  • Materialdeklarationsdatenblatt Inhaltstypen (MDDS Content IDs) 707440

Informationen zur Einhaltung von Handelsvorschriften

  • ECCN 5A992CN3
  • CCATS G167599
  • US HTS 8542310001

PCN Informationen

SRKGY

Treiber und Software

Neueste Treiber und Software

Verfügbare Downloads:
Alle

Name

Support

Prozessornummer

Neben Prozessormarke, Systemkonfigurationen und Benchmarks auf Systemebene ist die Intel Prozessornummer nur einer von mehreren Faktoren, die Sie bei der Auswahl des richtigen Prozessors für Ihre Anforderungen an einen Computer berücksichtigen sollten. Lesen Sie mehr über die Interpretation von Intel® Prozessornummern oder Intel® Prozessornummern für das Rechenzentrum.

Lithographie

„Lithographie“ bezieht sich auf die Halbleitertechnik, die für die Herstellung einer integrierten Leiterplatine verwendet und in Nanometern (nm) angegeben wird. Dadurch wird der Funktionsumfang des Halbleiters angezeigt.

Anzahl der Kerne

„Kern“ ist ein Hardwarebegriff, der die Anzahl der unabhängigen zentralen Prozessoreinheiten in einer Rechnerkomponente (Chip) beschreibt.

Gesamte Threads

Sofern zutreffend, ist die Intel® Hyper-Threading-Technik nur auf Performance-cores verfügbar.

Burst-Frequenz

Die Burst-Frequenz ist die maximale Einzelkern-Frequenz, zu der der Prozessor betrieben werden kann. Die Frequenz wird gewöhnlich in Gigahertz (GHz) gemessen bzw. in Milliarden von Taktzyklen pro Sekunde.

Weitere Informationen zum Betriebsbereich für dynamische Leistung und Frequenz finden Sie unter Häufig gestellte Fragen (FAQs) zum Leistungsproxy für Intel® Prozessoren.

Grundtaktfrequenz des Prozessors

Die Grundtaktfrequenz des Prozessors bezeichnet die Geschwindigkeit, mit der sich die Transistoren des Prozessors öffnen und schließen. Die Grundtaktfrequenz des Prozessors ist der Betriebspunkt, auf Grundlage dessen die TDP bestimmt wird. Die Frequenz wird in Gigahertz (GHz) gemessen bzw. in Milliarden Takten pro Sekunde.

Weitere Informationen zum Betriebsbereich für dynamische Leistung und Frequenz finden Sie unter Häufig gestellte Fragen (FAQs) zum Leistungsproxy für Intel® Prozessoren.

Cache

Der CPU-Cache ist ein Bereich des schnellen Speichers, der sich im Prozessor befindet. Intel® Smart-Cache bezieht sich auf die Architektur, die ermöglicht, dass alle Kerne den Zugriff auf den Last-Level-Cache dynamisch teilen.

Scenario Design Power (SDP)

Scenario Design Power (SDP) ist ein weiterer thermischer Bezugspunkt zum Zweck der Darstellung thermisch relevanter Gerätenutzungen in realen Umgebungsszenarien. Mit ihm werden Leistungs- und Energieanforderungen über verschiedene Systemauslastungen hinweg zur Wiedergabe der realen Energienutzung abgewogen. Vollständige Energiespezifikationen finden Sie in der technischen Dokumentation zum Produkt.

Verlustleistung (TDP)

Thermal Design Power (TDP) steht für die durchschnittliche Leistungsaufnahme (in Watt), die der Prozessor beim Betrieb auf Basisfrequenz ableitet, wenn alle Kerne bei einer von Intel definierten, hochkomplexen Arbeitslast aktiv sind. Die Kühleranforderungen finden Sie im Datenblatt.

Einführungsdatum

Das Datum, an dem das Produkt erstmals auf dem Markt eingeführt wurde.

Embedded-Modelle erhältlich

„Embedded-Optionen verfügbar“ weist darauf hin, dass der Artikel üblicherweise 7 Jahre lang ab der Einführung des ersten Artikels in der betreffenden Produktreihe zum Kauf zur Verfügung steht. Unter bestimmten Umständen kann er auch längere Zeit erworben werden. Intel übernimmt keine Verpflichtung oder Garantie für die Produktverfügbarkeit oder den technischen Support im Rahmen von Roadmap-Vorgaben. Intel behält sich das Recht vor, Roadmaps zu ändern oder Produkte, Software und Software-Support-Service im Rahmen von Standardprozessen für End-of-Life (EOL) bzw. Produktabkündigung (Product Discontinuation Notice, PDN) einzustellen. Informationen zur Produktzertifizierung und zu den Nutzungsbedingungen finden Sie im PRQ-Bericht (Production Release Qualification) für diesen Artikel. Wenden Sie sich wegen Einzelheiten bitte an Ihren Ansprechpartner bei Intel.

Einsatzbedingungen

Die Einsatzbedingungen sind die Umgebungs- und Betriebsbedingungen, die sich aus dem Kontext der Systemnutzung ableiten.
SKU-spezifische Einsatzbedingungsinformationen finden Sie im PRQ-Bericht.
Aktuelle Einsatzbedingungsinformationen finden Sie unter Intel UC (CNDA-Website)*.

Max. Speichergröße (abhängig vom Speichertyp)

Die max. Speichergröße bezieht sich auf die maximale Speicherkapazität, die der Prozessor unterstützt.

Speichertypen

Intel® Prozessoren sind in vier Typen erhältlich: Einkanal-, Zweikanal-, Dreikanal- und flexibler Modus.

Max. Anzahl der Speicherkanäle

Die Anzahl der Speicherkanäle bezieht sich auf den Bandbreitenbetrieb für die Anwendung in der Praxis.

Unterstützung von ECC-Speicher

„Unterstützung von ECC-Speicher“ bezeichnet die Prozessorunterstützung für den Fehlerbehebungscodespeicher. Der ECC-Speicher ist ein Systemspeichertyp, der herkömmliche interne Datenfehler erkennen und korrigieren kann. Beachten Sie, dass die Unterstützung von ECC-Speicher sowohl Prozessor- als auch Chipsatzunterstützung erfordert.

GPU-Name

„Prozessorgrafik“ bedeutet die im Prozessor integrierte Grafikverarbeitung-Halbleitertechnik, die die Grafik-, Rechen-, Medien- und Displayfunktionalitäten ermöglicht. Zu den Prozessorgrafikmarken gehören Intel® Iris® Xe Grafik, Intel® UHD-Grafik, Intel® HD-Grafik, Iris® Grafik, Iris® Plus Grafik und Iris® Pro Grafik. Auf der Intel® Grafik-Technologie finden Sie weitere Informationen dazu.

Nur Intel® Iris® Xe Grafik: Um die Marke Intel® Iris® Xe zu verwenden, muss das System mit 128-Bit-Speicher (Zweikanalspeicher) bestückt sein. Andernfalls sollten Sie die Marke Intel® UHD verwenden.

Die Intel® Arc™ Grafik ist nur auf ausgewählten Systemen der H-Reihe der Intel® Core™ Ultra Prozessoren mit mindestens 16 GB Systemspeicher in Zweikanalkonfiguration verfügbar. OEM-Aktivierung erforderlich. Erkundigen Sie sich bei Ihrem OEM oder Einzelhändler bezüglich Details zur Systemkonfiguration.

Grundtaktfrequenz der Grafik

Die Grundtaktfrequenz der Grafik bezeichnet die Rendering-Taktfrequenz in MHz, auf die die Grafik ausgelegt ist bzw. die für die Grafik garantiert wird.

Weitere Informationen zum Betriebsbereich für dynamische Leistung und Frequenz finden Sie unter Häufig gestellte Fragen (FAQs) zum Leistungsproxy für Intel® Prozessoren.

Burst-Frequenz der Grafik

Weitere Informationen zum Betriebsbereich für dynamische Leistung und Frequenz finden Sie unter Häufig gestellte Fragen (FAQs) zum Leistungsproxy für Intel® Prozessoren.

Videoausgang

„Videoausgang“ bezeichnet die Schnittstellen, die für die Kommunikation mit Anzeigegeräten verfügbar sind.

Ausführungseinheiten

Die Ausführungseinheit ist der grundlegende Baustein in Intels Grafikarchitektur. Ausführungseinheiten sind Rechenprozessoren, die für simultanes Multithreading (SMT) und hohen Durchsatz bei Berechnungen optimiert wurden.

4K-Unterstützung

4K-Unterstützung bedeutet, dass das Produkt die 4K-Auflösung unterstützt, die hier als mindestens 3840 x 2160 definiert wird.

Max. Auflösung (HDMI)‡

Max. Auflösung (HDMI) ist die Angabe für die höchste vom Prozessor über die HDMI-Schnittstelle unterstützte Auflösung (24 Bit pro Pixel und 60 Hz). Die Bildschirmauflösung des Systems bzw. Geräts hängt von mehreren Faktoren des Systemdesigns ab; die tatsächliche Auflösung kann bei Ihrem System niedriger sein.

Max. Auflösung (DP)‡

Max. Auflösung (DP) ist die Angabe für die höchste vom Prozessor über die DP-Schnittstelle unterstützte Auflösung (24 Bit pro Pixel und 60 Hz). Die Bildschirmauflösung des Systems bzw. Geräts hängt von mehreren Faktoren des Systemdesigns ab; die tatsächliche Auflösung kann bei Ihrem System niedriger sein.

Unterstützung für DirectX*

Unterstützung für DirectX* bedeutet die Unterstützung einer spezifischen Version der Microsoft-Sammlung von APIs (Programmierschnittstellen/Application Programming Interfaces) für die Ausführung von Multimedia-Rechenaufgaben.

OpenGL* Unterstützung

OpenGL (Open Graphics Library) ist eine programmiersprachenübergreifende, Multiplattform-API (Application Programming Interface/Programmierschnittstelle) für das Rendern von 2D- und 3D-Vektorgrafik.

OpenCL* Support

OpenCL (Open Computing Language) ist eine plattformübergreifende API (Application Programming Interface) für heterogene parallele Programmierung.

Intel® Quick-Sync-Video

Intel® Quick-Sync-Video bietet schnelle Videoumwandlung für tragbare Medienplayer, Online-Veröffentlichung sowie Videobearbeitung und -entwicklung.

Chipsatz / PCH PCIe-Revision

Chipset/PCH PCIe Revision ist die Version, die vom PCH für die PCIe Lanes unterstützt wird, die direkt am PCH angeschlossen sind. Peripheral Component Interconnect Express (PCIe) ist ein serieller Computer-Erweiterungsbusstandard mit hoher Übertragungsrate, mit dem Hardwaregeräte an einen Computer angeschlossen werden. Die verschiedene PCIe-Express-Version unterstützen unterschiedliche Datenraten.

Maximale Anzahl der PCI-Express-Lanes

Eine PCI-Express-Lane (PCIe-Lane) besteht aus zwei verschiedenen Signalpaaren, eines für den Empfang und eines für das Senden von Daten, und ist die Basiseinheit des PCIe-Bus. „Anzahl der PCI-Express-Lanes“ ist die Gesamtzahl, die vom Prozessor unterstützt wird.

USB-Version

USB (Universal Serial Bus) ist eine Verbindungstechnik nach Branchenstandard für den Anschluss von Peripheriegeräten an einen Computer.

Integriertes LAN

Integriertes LAN bedeutet, dass auf dem System-Mainboard eine integrierte Intel Ethernet-MAC-Adresse oder integrierte LAN-Anschlüsse vorhanden sind.

Geeignete Sockel

Der Sockel ist die Komponente, die die mechanischen und elektrischen Verbindungen zwischen dem Prozessor und dem Mainboard bietet.

TJUNCTION

„T JUNCTION“ bezeichnet die maximal zugelassene Temperatur beim Prozessor-Chip.

Intel® Gauß- und neuraler Beschleuniger

Der Intel® Gauß- und neuraler Beschleuniger (GNA) ist ein bei äußerst niedrigem Stromverbrauch laufender Beschleunigerblock, der für Audio- und geschwindigkeitszentrierte KI-Workloads entwickelt wurde. Intel® GNA wurde entwickelt, um audiobasierte neurale Netzwerke bei äußerst niedrigem Stromverbrauch auszuführen und gleichzeitig der CPU diese Arbeitslast abzunehmen.

Intel® Image Processing Unit

Die Intel® Image Processing Unit ist ein integrierter Bildsignalprozessor mit fortschrittlicher Hardware-Implementierung, um die Bild- und Videoqualität von Kameras zu verbessern.

Intel® Smart Sound Technologie

Die Intel® Smart Sound Technologie besteht aus einem integrierten Audio-DSP (Digital Signal Processor), der Audio, Sprache und durch Sprache gesteuerte Interaktionen verarbeitet. Der DSP ermöglicht PCs mit den neuesten Intel® Core™ Prozessoren ohne negative Auswirkungen auf die Systemleistung und Akkulaufzeit schnell auf Sprachbefehle zu reagieren und Audiowiedergabe in HiFi-Qualität zu bieten.

Intel® Wake on Voice

Intel® Wake on Voice ermöglicht es Ihrem Gerät, zu warten und auf Ihre Stimme zu lauschen, ohne übermäßig Strom oder Akkulaufzeit zu verbrauchen, sowie aus dem Modern Standby zu erwachen.

Intel® High Definition Audio

Audioschnittstelle für Codecs zur Kommunikation mit Intel SoCs und Chipsätzen.

Intel® Optane™ Speicher unterstützt

Intel® Optane™ Speicher ist eine revolutionäre neue Klasse von nichtflüchtigem Speicher, der zwischen dem Systemspeicher und dem Datenspeicher angesiedelt ist, um die Leistung und Reaktionsgeschwindigkeit des Systems zu beschleunigen. In Kombination mit dem Intel® Rapid-Storage-Technik-Treiber verwaltet er nahtlos mehrere Speicherstufen, bei Bereitstellung eines virtuellen Laufwerks für das Betriebssystem. Dadurch wird sichergestellt, dass sich häufig verwendete Daten auf der schnellsten Speicherstufe befinden. Intel® Optane™ Speicher erfordert eine spezifische Hardware- und Softwarekonfiguration. Die Konfigurationsvoraussetzungen finden Sie unter https://www.intel.com/content/www/de/de/architecture-and-technology/optane-memory.html.

Intel® Speed Shift Technology

Die Intel® Speed Shift Technology nutzt hardware-gesteuerte P-Stati, um mit vorübergehenden Single-Thread-Workloads von kurzer Dauer (wie beim Browsen im Internet) eine bedeutend schnellere Reaktionszeit zu erzielen. Dazu wird es dem Prozessor ermöglicht, die jeweils beste Betriebsfrequenz und Spannung zu wählen, um optimale Leistung und Energieeffizienz zu erzielen.

Intel® Turbo Boost Max-Technik 3.0

Intel® Turbo Boost Max-Technik 3.0 identifiziert den/die Kern(e) mit der besten Leistung und liefert an diese Kerne erhöhte Leistung, indem sie die Taktfrequenz nach Bedarf steigert und dabei Strom- und Temperaturreserven verwendet.

Intel® Turbo-Boost-Technik

Die Intel® Turbo-Boost-Technik erhöht dynamisch die Frequenz eines Prozessors nach Bedarf, indem die Temperatur- und Leistungsreserven ausgenutzt werden, um bei Bedarf mehr Geschwindigkeit und andernfalls mehr Energieeffizienz zu bieten.

Intel® Hyper-Threading-Technik

Die Intel® Hyper-Threading-Technik ermöglicht zwei Verarbeitungs-Threads pro physischem Kern. Anwendungen mit vielen Threads können mehr Aufgaben parallel erledigen und Tasks früher beenden.

Intel® 64

In Verbindung mit der entsprechenden Software ermöglicht die Intel® 64 Architektur die 64-Bit-Verarbeitung bei Servern, Workstations, PCs und Mobilplattformen.¹ Intel 64 verbessert die Leistung, da das System durch diese Prozessorerweiterung mehr als 4 GB virtuellen und physischen Speicher adressieren kann.

Befehlssatz

Ein Befehlssatz bezeichnet den Satz grundlegender Befehle und Anweisungen, die ein Mikroprozessor versteht und ausführen kann. Der angezeigte Wert gibt an, mit welchem Intel Befehlssatz dieser Prozessor kompatibel ist.

Befehlssatzerweiterungen

Befehlssatzerweiterungen sind zusätzliche Anweisungen zur Erhöhung der Leistung, wenn die gleichen Vorgänge auf mehreren Datenobjekten ausgeführt werden. Diese können SSE (Streaming SIMD Extensions) und AVX (Advanced Vector Extensions) umfassen.

Erweiterte Intel SpeedStep® Technologie

Die Erweiterte Intel SpeedStep® Technologie ist eine fortschrittliche Funktionalität für die auf Mobilgeräten benötigte Kombination von hoher Leistung bei einem möglichst niedrigen Energieverbrauch. Die herkömmliche Intel SpeedStep® Technologie schaltet die Spannung und die Frequenz je nach Prozessorauslastung gleichzeitig zwischen hohen und niedrigen Werten um. Die Erweiterte Intel SpeedStep® Technologie baut auf dieser Architektur auf und nutzt Designstrategien wie Trennung zwischen Spannungs- und Frequenzänderungen sowie Taktpartitionierung und Wiederherstellung.

Thermal-Monitoring-Technologien

Thermal-Monitoring-Technologien schützen das Prozessorpaket und das System über Temperaturverwaltungsfunktionen vor temperaturbedingten Ausfällen. Ein digitaler Temperatursensor auf dem Chip erkennt die Temperatur des Kerns, und die Temperaturverwaltungsfunktionen senken bei Bedarf den Energieverbrauch des Pakets und damit die Temperatur, um die Grenzwerte für den normalen Betrieb einzuhalten.

Intel® Identity-Protection-Technik

Die Intel® Identity-Protection-Technik ist eine integrierte Sicherheitstechnik, die eine einfache, manipulationssichere Methode zum Schutz Ihrer Online-Kunden- und Geschäftsdaten vor Bedrohungen und Betrug bietet. Die Intel® Identity-Protection-Technik bietet einen hardwarebasierten Nachweis über den PC eines Nutzers beim Zugriff auf Websites, Finanzeinrichtungen und Netzwerkdienste. Die Technik verifiziert, dass es sich nicht um Malware handelt, die einen Anmeldeversuch durchführt. Die Intel® Identity-Protection-Technik kann ein wichtiger Bestandteil von Zwei-Faktor-Authentifizierungslösungen sein, die Ihre Informationen bei Anmeldungen auf Websites und im Unternehmensbereich schützen.

Intel® AES New Instructions

Intel® AES New Instructions (Intel® AES-NI) ist eine Zusammenstellung von Anweisungen zur schnellen und sicheren Verschlüsselung und Entschlüsselung von Daten. AES-NI sind wertvolle Komponenten für kryptografische Anwendungen, z. B. für: Anwendungen zur Massenverschlüsselung/-entschlüsselung, Authentifizierung, Generierung von zufälligen Nummern und Authentifizierungsverschlüsselung.

Intel® Software Guard Extensions (Intel®SGX)

Die Intel® Software Guard Extensions (Intel® SGX) geben Anwendungen die Möglichkeit, einen per Hardware durchgesetzten Trusted-Execution-Schutz für deren sensible Routinen und Daten einzurichten. Intel® SGX bietet Entwicklern eine Möglichkeit, Code und Daten in von der CPU gesicherten vertrauenswürdigen Umgebungen für die Programmausführung (Trusted Execution Environments, TEEs) zu partitionieren.

Intel® Trusted-Execution-Technik

Die Intel® Trusted-Execution-Technik erhöht die Sicherheit von PCs. Sie umfasst eine Reihe von Hardware-Erweiterungen für Intel® Prozessoren und Chipsätze, die zusätzliche Sicherheitsfunktionen für die digitale Büroplattform bereitstellen, wie das sichere Starten von Systemprogrammen und des Betriebssystems und das Ausführen von Anwendungen in einem geschützten Bereich. Dies ermöglicht eine Umgebung, in der Anwendungen auf einem eigenen, von aller anderen Software des Systems abgeschotteten Bereich ausgeführt werden.

Intel® Boot Guard

Die Intel® Device Protection Technology mit Boot Guard trägt zum Schutz der Umgebung vor Viren und bösartigen Softwareangriffen vor der Aktivierung des Betriebssystem bei.

Mode-based Execute Control (modusbasierte Ausführungssteuerung, MBEC)

Modusbasierte Ausführungssteuerung kann die Integrität des Codes auf Kernel-Ebene zuverlässiger verifizieren und durchsetzen.

Intel® Virtualisierungstechnik (VT-x)

Mit der Intel® Virtualisierungstechnik (VT-x) kann eine Hardwareplattform als mehrere „virtuelle“ Plattformen eingesetzt werden. Sie bietet verbesserte Verwaltbarkeit durch weniger Ausfallzeiten und eine Beibehaltung der Produktivität, indem die Rechenvorgänge in separate Partitionen verschoben werden.

Intel® Directed-I/O-Virtualisierungstechnik (VT-d)

Die Intel® Directed-I/O-Virtualisierungstechnik (VT-d) setzt die bestehende Unterstützung von Virtualisierungslösungen für die IA-32 (VT-x) und Systeme mit Itanium® Prozessoren (VT-i) fort und erweitert diese um neue Unterstützung für die I/O-Gerätevirtualisierung. Die Intel VT-d kann Benutzern helfen, die Sicherheit und Zuverlässigkeit von Systemen sowie die Leistung von I/O-Geräten in virtualisierten Umgebungen zu verbessern.

Intel® VT-x mit Extended Page Tables (EPT)

Intel® VT-x mit Extended Page Tables (EPT), auch bekannt als Second Level Address Translation (SLAT), beschleunigt speicherintensive Virtualisierungsanwendungen. Der Einsatz von Extended Page Tables bei Plattformen mit Intel® Virtualisierungstechnik reduziert die Gesamtkosten für Speicher und Stromversorgung und erhöht die Akkulaufzeit durch Hardwareoptimierung der Seitentabellenverwaltung.

Tray-Prozessor

Intel liefert diese Prozessoren an Originalgerätehersteller (Original Equipment Manufacturers, OEMs), die diese üblicherweise vorab installieren. Intel bezeichnet diese Prozessoren als Tray- oder OEM-Prozessoren. Intel bietet keine direkte Unterstützung bei Garantieangelegenheiten. Wenden Sie sich an Ihren OEM oder Fachhändler, um bei Garantieangelegenheit Unterstützung zu erhalten.