
White Paper

Table of Contents

Executive Summary. . 1

Quantizing Neural Networks for
FPGAs . . 2

What is BFP? . . 2

Asymmetric BFP for Increased
Savings . . 2

BFP vs Integer Quantization. 2

BFP for High Inference Accuracy. 3

BFP to Significantly Cut Resource
Count . . 3

Mixed Precision – The Advantages of
Very Low Precisions with the Accuracy
of Higher Precisions. 4

Conclusion. 4

References . . 5

Authors

R. Abra
FPGA Deep Learning Retraining Lead

Intel Programmable Solutions Group

D. Denisenko
Deep Learning Software Engineer

Intel Programmable Solutions Group

R. Allen
Solutions Engineer

Intel Programmable Solutions Group

T. Vanderhoek
Engineering Software Manager

Intel Programmable Solutions Group

S. Wolstencroft
Royal Holloway University

M. Gibson
University of Reading

Vision
FPGA

Low-Precision Networks for Efficient
Inference on FPGAs

Neural networks are highly compute intensive. As a result, downsizing any of
the calculations leads to significant savings in cost, time, and power. One way
to downsize calculations is to reduce the size of the parameters. Quantization
compresses the parameters in a neural network by reducing the number of bits
used to represent them. This in turn reduces both the size of each calculation and
the time and resources needed to move the values around the chip.

Implementing a low precision network in hardware provides numerous advantages
when it comes to meeting specification. The increased flexibility allows the
optimization of:

•	 Throughput
•	 Overall power consumption
•	 Resource usage
•	 Device size
•	 TOPs/Watt
•	 Deterministic latency

These have important benefits to the user experience, particularly where scaling
and efficiency are inherent requirements of the application.

There are many options for quantization: small integers (weights and activations
quantized to scaled integer values, e.g. int8), minifloats (e.g. FP11, FP9), or
application-optimized numeric formats. Our end-to-end solution uses Block
Floating Point (BFP), which has the advantage of easily halving the hardware
footprint while maintaining accuracy at low precisions. This is possible due to BFP’s
high dynamic range.

Only two scenarios require a little more intervention. Modern, compact networks
such as MobileNet and EfficientNet hold little in the way of redundancy, so accuracy
can be lost at low precision. Additionally, even the larger, older networks (ResNet,
VGG-SSDs) lose accuracy at very low precision. These losses can be recovered
within a few retraining epochs when the quantization is modelled in the training
flow. Accurate modelling of hardware arithmetic during training allows hardware
accuracy to closely match that achieved in software.

The main aim of retraining is therefore to facilitate the compression of FP32 models
to comply with application specifications, be they at the Edge or in the Cloud [1]. A
reduction in the number of bits inherent in a network enables far more flexibility
than is available at the larger size.

Executive Summary

Light retraining illuminates the way to meeting computer vision specifications

2

White Paper | Low-Precision Networks for Efficient Inference on FPGAs

FPGAs have a major advantage where specific numeric
formats are required [2]. For a given deep learning model, a
format can be chosen that optimally balances compute and
storage availability on the system with dynamic range and
precision required by the model to easily maintain accuracy.

Besides integer and floating-point formats natively supported
by Intel® FPGA digital signal processing (DSP) blocks1 , FPGA
logic can be used to implement additional numeric formats
that are particularly well suited to deep learning models.
BFP combines the extended dynamic range of floating-point
format with the low-cost implementation of fixed point.

In BFP, values are grouped into blocks — nominally of size
32 — within which each value takes the same exponent.
To achieve this, grouped numbers are aligned to suit the
largest exponent. The mantissas can now be treated as
signed integers in, for example, dot-product computation,
and combined with the shared exponent in the accumulation
step to convert the results to single precision floating-point
representation.

Low-precision BFP reduces the payload by eliminating bits
from two locations. The shared exponent removes the need
for individual assignment, while low-bit mantissas are vastly
smaller than the standard 23-bit fraction in FP32 values.
Figure 1 shows the bit savings from using different block and
mantissa sizes.

Dot product computations need not be symmetrical in BFP.
A further reduction in storage size can be achieved if weights
and activations are represented with different precisions.
Many Convolutional Neural Networks (CNNs) maintain their
accuracy even if their weights are represented with fewer bits
than the activations. For example, int5/4bfp format can be
used to store activations in int5bfp and weights in int4bfp.
Dot product engines implemented using an Intel® FPGA
would then perform 5 bit x 4 bit integer multiplies, which
would achieve more efficient DSP block packing than using
int5bfp for both weights and activations.

BFP can be compared against integer quantization with
favorable results. Each block of numbers in BFP gets its
own scaling factor (2max_exp), unlike integer quantization
where such factors are arbitrary floats on a per layer basis.
BFP provides an overall higher dynamic range, which can
be further adjusted with the size of the block. Additionally,
the BFP scaling factor is sized automatically as part of the
computation, instead of having to run additional initialization
steps.

int7bfp consists of seven integer bits (including the sign) and
five bits for the exponent. int5bfp, shown in Figure 2, consists
of four integer bits with one sign bit and five exponent bits.
Without the BFP blocking, this would be FP9 format, which
uses one sign bit, an implicit mantissa bit, three explicit
mantissa bits and five exponent bits.

Such small multiplication operations can be efficiently
implemented on Intel® FPGAs. For example, a single DSP
block in an Intel® Arria® 10 FPGA can implement two int7bfp
multiplier or, with a few additional ALMs, four int5bfp
multipliers. Since block size usually encompasses at least
eight values, significant storage and compute savings result
from utilizing BFP [7].

Quantizing Neural Networks for FPGAs

What is BFP?

Asymmetric BFP for Increased Savings BFP vs Integer Quantization

Figure 1. 	 The effect of blocking and mantissa size on the
number of bits in a neural network

Figure 2. 	Blocking of four FP9 floating point values to int5bfp. The "1" in the left-most mantissa positions is the implicit 1 in
floating-point format made explicit prior to conversion. Sign + mantissa bits are now in sign + magnitude integer format

Storage Size of BFP vs FP32

Number of Mantissa Bits

35%

30%

25%

20%

15%

10%

5%

0%
10 9 8 7 6 5 4 3 2

P
ro

po
rt

io
n

of
 F

P
32

 B
its

Block Size 8

Block Size 16

Block Size 32

S0 1 m02 m01 m00

1 m12 m11 m10

1 m22 m21 m20

1 m32 m31 m30

e04 e03 e02 e01 e00

e14 e13 e12 e11 e10

e24 e23 e22 e21 e20

e34 e33 e32 e31 e30

S1

S2

S3

S0

S1

S2

S3

Max Exponent

5 Bits

5 Bits

Shifted m0

Shifted m1

Shifted m2

Shifted m3

1 Some examples of natively supported numeric formats by Intel® FPGAs: 18-bit integer and FP32 on Intel® Arria® 10 FPGA
[3][4]; int8, FP16, and bfloat16 on Intel® Agilex™ FPGA [5], and int4 and int8 tensor block on Intel® Stratix® 10 NX FPGA [6].

3

Figure 3. 	Packing 6x6 bit (int7bfp) or 4x3 bit (int5/4bfp)
multipliers into an Intel Arria 10 FPGA 18 bit
multiplier

Many of the high parameter networks – the ResNets,
Inception, VGG-based SSDs – quantize well to int8bfp and
even int7bfp without any additional intervention, as shown
in Table 1, where green highlights indicate a minimal loss of
accuracy from the original FP32 model.

As expected, the drop in accuracy from applying quantization
is more perceptible at very low precisions. This effect is
exaggerated in the more modern, compact networks such as
MobileNet and EfficientNet, which experience some accuracy
drop even at higher precisions.

Fortunately, this penalty can be reversed easily. As few as four
epochs of retraining – or a dozen for the more challenging
networks – can recover the model’s accuracy. Where this

As already seen, the number of bits implicated in low
precision quantization is much reduced from the original
single precision implementation. This has a large knock-on
effect on hardware resources. For instance, the 18 bit input
hardened multipliers in an Intel® Arria® 10 FPGA (represented
in Figure 3) can be used to implement a single 18 bit x 18 bit
multiply, two 6 bit x 6 bit multiplies, or four 4 bit x 3 bit.

Pushing the sign bit into external logic therefore, it is
possible to halve the number of DSP blocks used at int12bfp
(equivalent to blocked FP16) by quantizing to a 7 bit mantissa
(int7bfp) and halve it again using a 5 bit x 4 bit (int5/4bfp)
configuration. These savings can be utilized to scale back the
hardware footprint or increase throughput.

BFP for High Inference Accuracy

BFP to Significantly Cut Resource Count

White Paper | Low-Precision Networks for Efficient Inference on FPGAs

Why Block Floating Point?

•	 Small resource footprint

•	 Excellent compatibility with Intel® FPGA DSP blocks

•	 High dynamic range models weights and activations
well at low precisions

•	 Simplicity in training: no parameter initialization

Table 1. 	 Indicative Top-1 accuracies for networks both with and without retraining, at int5/4bfp (int5bfp activations and int4bpf
weights), int7bfp and int8bfp – all at block size 32. n/a shows where retraining is not required

A

A

B

B

x

x

C

C

AxC

AxC BxC

AxD = BxDBxC

D

=

is insufficient, it is possible for the FPGA to accommodate
an increase in the activation bit width for specific layers.
Algorithmic techniques are available to determine and retrain
a network to account for these changes in precision (see
section on Mixed Precision below).

Int5/4bfp Int7bfp Int8bfp

Network FP32 accuracy
reference (%)

Accuracy
(%) without

retraining

Accuracy
(%) with

retraining

Accuracy
(%) without

retraining

Accuracy
(%) with

retraining

Accuracy
(%) without

retraining

Accuracy
(%) with

retraining

Classification (ImageNet)

ResNet-18 69.76 55.69 69.13 69.67 n/a 69.60 n/a

ResNet-34 73.31 65.09 72.81 72.94 n/a 73.09 n/a

ResNet-50 76.13 60.32 75.60 75.75 n/a 75.95 n/a

Inception v3 77.32 32.70 78.34 77.11 n/a 77.31 n/a

EfficientNet_b0 75.86 0.34 71.96 64.37 75.45 70.48 75.47

MobileNet v2 71.81 6.00 68.99 67.28 71.65 71.12 n/a

SqueezeNet v1.1 58.18 33.09 54.90 57.73 58.15 58.10 n/a

Object Detection (VOC 2007 & 2012)

SSD300 78.12 73.64 77.92 78.09 n/a 78.08 n/a

SSD512 80.26 74.72 80.00 80.19 n/a 80.08 n/a

Object Detection (COCO 2017)

TinyYOLO v3 35.7 26.90 31.40 35.50 n/a 35.60 n/a

Semantic Segmentation (CamVid)

UNet 71.95 63.95 72.36 71.66 n/a 71.89 n/a

ICNet 67.89 59.66 67.09 67.88 n/a 67.87 n/a

Blue 	 : Full precision accuracy
Green 	 : Achieves quantization accuracy within 1 percentage point of the full precision accuracy
Amber 	 : Achieves quantization accuracy within around 5 percentage points of the full precision accuracy
Red	 : Achieves quantization accuracy significantly lower than full precision accuracy

4

Figure 4. 	Resource count ratios and frame rate for ResNet 50
and MobileNet v2 inference at block size 32

Figure 5. 	Resource count ratios and frame rate for ResNet 50
and MobileNet v2 inference at block size 16

Figure 6. 	Resource count and accuracy for MobileNet v2
inference at 30 fps with block size 8

As seen, simply by reducing the precision, the associated
numbers of ALMs and RAM blocks roughly follow the pattern
seen in DSP block usage. This is amplified by decreasing the
block size, which – while limiting throughput – compounds
the benefits in the footprint. It is worth noting that doubling
the number of hardware instances doubles the throughput
— potentially useful in the case of multiple input streams or
requirements for redundancy in the system.

White Paper | Low-Precision Networks for Efficient Inference on FPGAs

Meaningful examples mirror real-life applications, which
tend to employ variations of standard networks. As
typical benchmarks, ResNet 50 and MobileNet v2 are used
throughout this section to give an idea of the effects of
quantization. The reference is int12bfp which is a good proxy
for single precision in this context owing to the negligible
accuracy loss from downsizing.

Simply by reducing the precision, the associated numbers
of Adaptive Logic Modules (ALMs) and RAM blocks roughly
follow the pattern seen in multiplier usage. This reduction
is reflected in the number of DSP blocks and amplified
by decreasing the block size, which – while limiting the
throughput – has additional benefits for the footprint.

Also worthy of note is that the choice of network makes
a big difference to the frame rate, with the much smaller
MobileNet v2 attaining around twice the frame rate of ResNet
50 for the same footprint.

In the following figures, the baseline footprint (indicated in
the leftmost columns of Figure 4) at int12bfp and block size
32 is:

•	 816 M20K RAM blocks

•	 551 DSP blocks

•	 39,315 ALMs

In Figure 4, reductions in footprint result directly from
reduced precision. With a single bitstream for both ResNet
50 and MobileNet v2, it is interesting to note the difference in
frame rate.

int12bfp (eq. o FP16)

Fr
am

e
R

at
e

(f
ps

)

R
at

io
 o

f F
P

16
 R

es
ou

rc
e

C
ou

nt

int7bfp int5/4bfp

RAM Blocks

ResNet50 fps

DSP Blocks

MobileNetv2 fps

ALMs

160

140

120

100

80

60

40

30

0

1.0

0.8

0.6

0.4

0.2

0.0

Optimizing further, halving the block size leads to even
greater savings. In Figure 5, while frame rate is halved for
MobileNet v2 and reduced by two thirds for ResNet 50, using
block size 16 halves RAM utilization and reduces the DSP
block usage by two thirds.

An additional indication of available trade-offs is given in
Figure 6. A realistic application may well use MobileNet v2
at a frame rate of 30 frames per second (fps). In this case, a
block size of 8 is sufficient to fulfill the criteria which results
in the use of 103 M20K RAM blocks, 31 DSP blocks and
12,635 ALMs at int5/4bfp.

int12bfp (eq. o FP16)

Fr
am

e
R

at
e

(f
ps

)

R
at

io
 o

f F
P

16
 R

es
ou

rc
e

C
ou

nt

int7bfp int5/4bfp

RAM Blocks

ResNet50 fps

DSP Blocks

MobileNetv2 fps

ALMs

70

60

50

40

30

20

10

0

1.0

0.8

0.6

0.4

0.2

0.0

Hardware Footprint on Reducing Network
Precision - Block Size 32

Hardware Footprint on Reducing Network
Precision - Block Size 16

Hardware Footprint on Reducing Network
Precision - Block Size 16

int12bfp (eq. o FP16)

R
at

io
 o

f F
P

16
 R

es
ou

rc
e

C
ou

nt

int7bfp int5/4bfp

RAM Blocks DSP Blocks ALMs

1.0

0.8

0.6

0.4

0.2

0.0

5

Mixed Precision – The Advantages of Very Low
Precisions with the Accuracy of Higher
Precisions

Conclusion

Finally, for those situations where low precision quantization
and retraining provides an unacceptable loss in accuracy,
certain modes of mixed precision exist that have a
cumulatively positive effect. These include “layer type”
precision changes to incorporate higher precision hardware
kernels, say for depthwise convolutions, and per-layer tensor
precision doubling.

Although distinguishing different layer types is
straightforward, accuracy uplift — much like training the
original network — is determined by exploratory testing.
This can be mitigated by using algorithms such as Hessian
Aware Quantization (HAWQ), that determine the sensitivity
of each convolutional layer to quantization. Each layer can be
identified and the bit width of the weights, the activations or
both can be doubled accordingly in retraining. In hardware,
this augmentation can easily be effected by multiple passes
through the PE array [8].

Figure 7 shows the results of training MobileNet v2 at BFP
precisions determined by HAWQ. There is built-in flexibility to
specify what proportion of the parameters in the convolution
layers are doubled.

Many AI applications have stringent requirements that are
complicated by additional functions needing to be in-lined,
such as I/O, clipping, scaling, and dewarp. A big advantage of
FPGAs is that these can be included as intellectual property
(IP) cores on the same chip and combined as building
blocks. While the functions themselves may claim heavy
resource usage, the flexibility provided to neural network
engines by BFP quantization can reduce the IP footprint
and help to meet other specifications such as throughput or
performance.

BFP quantization works very well on FPGAs due to the ability
to pack integers of certain sizes efficiently into the DSP
blocks, which very easily allows the footprint reductions
shown on the previous page. A 50% reduction in DSP
block usage is achieved simply by reducing the precision to
int7bfp. This is replicated on a further precision reduction
to int5/4bfp. Other logic elements follow a similar pattern
of usage reduction. From here, changing the block size or
repeating instantiations of the hardware enables tuning of
the frame rate.

A further benefit of BFP quantization is its ability to store
more network graphs in DDR. With a greater number of
parameters available on-chip, the time and power to change
from one graph to another reduces, enabling high-speed
switching for different types of inference.

Where accuracy is concerned, BFP has a high dynamic range
that is modifiable via the block size. This makes it very adept
at retraining, even at very low precisions. A default block size
of 32 is sufficient to allow older, larger networks to quantize
at int7bfp without retraining (specifically ResNet, SqueezeNet,
VVG-SSDs, TinyYOLO, UNet and ICNet). On newer, leaner
topologies such as the MobileNets and EfficientNet, the
resultant drop from quantization can be overcome with a
few epochs of retraining. At precisions lower than int7bfp,
these leaner networks still achieve good accuracy by enable
precision-doubling for select critical layers.

The software model has several benefits. In addition to
providing a neural network training facility, it allows:

•	 Testing the effects on accuracy of quantization before
implementation

•	 Retraining to recoup accuracy lost through low precision
quantization

•	 The ability to trial mixed precision configurations and
higher precision kernels before building in hardware

All three points save a significant amount of time in
speculative bitstream compilation and hardware engineering.

In summary, quantization is an easy way to significantly
reduce hardware footprint while maintaining frame rate and
keeping accuracy loss to a minimum.

White Paper | Low-Precision Networks for Efficient Inference on FPGAs

Figure 7. 	Accuracies achieved with mixed precision layers on
MobileNet v2 with a base of int5/4bfp. Percentage
figures show proportion of convolution layer
parameters doubled

To
p-

1 A
cc

ur
ac

y

72.0

71.5

71.0

70.0

70.5

69.5

69.0

68.5
1.00 1.50 2.00 2.50 3.00 3.50 4.00

Estimated Slowdown

0.0%

1.3%

5.5%

18.8%

12.5%

23.4%
31.0%

49.8%
68.5%

93.1%

6

References

For more information about Intel and low-precision inference on FPGAs, the following links are available:

[1]	 “A Configurable Cloud-Scale DNN Processor for Real-Time AI”, https://www.microsoft.com/en-us/research/uploads/
prod/2018/06/ISCA18-Brainwave-CameraReady.pdf

[2]	 “Harnessing Numerical Flexibility for Deep Learning on FPGAs”, Proceedings of the 9th International Symposium on
Highly-Efficient Accelerators and Reconfigurable Technologies, https://dl.acm.org/doi/10.1145/3241793.3241794

[3]	 “Intel Arria 10 Native Fixed Point DSP IP Core User Guide”, https://www.intel.com/content/dam/altera-www/global/en_US/
pdfs/literature/ug/ug_nfp_dsp.pdf

[4]	 “Intel Arria 10 Native Floating-Point DSP Intel FPGA IP User Guide”, https://www.intel.com/content/dam/altera-www/
global/en_US/pdfs/literature/ug/ug-a10dsp.pdf

[5]	 “Intel Agilex Variable Precision DSP Blocks User Guide”, https://www.intel.com/content/dam/www/programmable/us/en/
pdfs/literature/hb/agilex/ug-ag-dsp.pdf

[6]	 “Intel® Stratix® 10 NX FPGA”, https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/
stratix-10-nx-technology-brief.pdf

[7]	 “Flexibility: FPGAs and CAD in Deep Learning Acceleration”, Proceedings of the 2018 International Symposium on Physical
Design, https://doi.org/10.1145/3177540.3177561

[8]	 US Patent application number 16/818889: “Floating-point Decomposition Circuitry with Dynamic Precision”,
https://uspto.report/patent/app/20200218508

  Please Recycle

The performance numbers presented herein are a mix of measured and estimated numbers generated using an Arria 10 PAC card at a batch size of 1, incorporating an A10-1150 speed grade 2
FPGA. The host is a Xeon E5-1650 v3 @ 3.5 GHz w/ 132 GB RAM. Some numbers were estimated based on the fmax of the compiled architecture.

All information provided here is subject to change without notice.

Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document.

You should visit the referenced web site and confirm whether referenced data are accurate.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation.

Performance varies depending on system configuration. No computer system can be absolutely secure.

Check with your system manufacturer or retailer or learn more at www.intel.com.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

WP-01308-1.0

White Paper | Low-Precision Networks for Efficient Inference on FPGAs

https://www.microsoft.com/en-us/research/uploads/prod/2018/06/ISCA18-Brainwave-CameraReady.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2018/06/ISCA18-Brainwave-CameraReady.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_nfp_dsp.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_nfp_dsp.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug-a10dsp.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug-a10dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ug-ag-dsp.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ug-ag-dsp.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/stratix-10-nx-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/stratix-10-nx-technology-brief.pdf

