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Low-Precision Networks for Efficient 
Inference on FPGAs

Neural networks are highly compute intensive. As a result, downsizing any of 
the calculations leads to significant savings in cost, time, and power. One way 
to downsize calculations is to reduce the size of the parameters. Quantization 
compresses the parameters in a neural network by reducing the number of bits 
used to represent them. This in turn reduces both the size of each calculation and 
the time and resources needed to move the values around the chip.

Implementing a low precision network in hardware provides numerous advantages 
when it comes to meeting specification. The increased flexibility allows the 
optimization of:

•	 Throughput
•	 Overall power consumption
•	 Resource usage
•	 Device size
•	 TOPs/Watt
•	 Deterministic latency 

These have important benefits to the user experience, particularly where scaling 
and efficiency are inherent requirements of the application.

There are many options for quantization: small integers (weights and activations 
quantized to scaled integer values, e.g. int8), minifloats (e.g. FP11, FP9), or 
application-optimized numeric formats. Our end-to-end solution uses Block 
Floating Point (BFP), which has the advantage of easily halving the hardware 
footprint while maintaining accuracy at low precisions. This is possible due to BFP’s 
high dynamic range.

Only two scenarios require a little more intervention. Modern, compact networks 
such as MobileNet and EfficientNet hold little in the way of redundancy, so accuracy 
can be lost at low precision. Additionally, even the larger, older networks (ResNet, 
VGG-SSDs) lose accuracy at very low precision. These losses can be recovered 
within a few retraining epochs when the quantization is modelled in the training 
flow. Accurate modelling of hardware arithmetic during training allows hardware 
accuracy to closely match that achieved in software.

The main aim of retraining is therefore to facilitate the compression of FP32 models 
to comply with application specifications, be they at the Edge or in the Cloud [1]. A 
reduction in the number of bits inherent in a network enables far more flexibility 
than is available at the larger size.

Executive Summary

Light retraining illuminates the way to meeting computer vision specifications
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FPGAs have a major advantage where specific numeric 
formats are required [2]. For a given deep learning model, a 
format can be chosen that optimally balances compute and 
storage availability on the system with dynamic range and 
precision required by the model to easily maintain accuracy.

Besides integer and floating-point formats natively supported 
by Intel® FPGA digital signal processing (DSP) blocks1 , FPGA 
logic can be used to implement additional numeric formats 
that are particularly well suited to deep learning models. 
BFP combines the extended dynamic range of floating-point 
format with the low-cost implementation of fixed point.

In BFP, values are grouped into blocks — nominally of size 
32 — within which each value takes the same exponent. 
To achieve this, grouped numbers are aligned to suit the 
largest exponent. The mantissas can now be treated as 
signed integers in, for example, dot-product computation, 
and combined with the shared exponent in the accumulation 
step to convert the results to single precision floating-point 
representation.

Low-precision BFP reduces the payload by eliminating bits 
from two locations. The shared exponent removes the need 
for individual assignment, while low-bit mantissas are vastly 
smaller than the standard 23-bit fraction in FP32 values. 
Figure 1 shows the bit savings from using different block and 
mantissa sizes.

Dot product computations need not be symmetrical in BFP. 
A further reduction in storage size can be achieved if weights 
and activations are represented with different precisions. 
Many Convolutional Neural Networks (CNNs) maintain their 
accuracy even if their weights are represented with fewer bits 
than the activations. For example, int5/4bfp format can be 
used to store activations in int5bfp and weights in int4bfp. 
Dot product engines implemented using an Intel® FPGA 
would then perform 5 bit x 4 bit integer multiplies, which 
would achieve more efficient DSP block packing than using 
int5bfp for both weights and activations.

BFP can be compared against integer quantization with 
favorable results. Each block of numbers in BFP gets its 
own scaling factor (2max_exp), unlike integer quantization 
where such factors are arbitrary floats on a per layer basis. 
BFP provides an overall higher dynamic range, which can 
be further adjusted with the size of the block. Additionally, 
the BFP scaling factor is sized automatically as part of the 
computation, instead of having to run additional initialization 
steps.

int7bfp consists of seven integer bits (including the sign) and 
five bits for the exponent. int5bfp, shown in Figure 2, consists 
of four integer bits with one sign bit and five exponent bits. 
Without the BFP blocking, this would be FP9 format, which 
uses one sign bit, an implicit mantissa bit, three explicit 
mantissa bits and five exponent bits.

Such small multiplication operations can be efficiently 
implemented on Intel® FPGAs. For example, a single DSP 
block in an Intel® Arria® 10 FPGA can implement two int7bfp 
multiplier or, with a few additional ALMs, four int5bfp 
multipliers. Since block size usually encompasses at least 
eight values, significant storage and compute savings result 
from utilizing BFP [7]. 

Quantizing Neural Networks for FPGAs

What is BFP?

Asymmetric BFP for Increased Savings BFP vs Integer Quantization

Figure 1.  	 The effect of blocking and mantissa size on the 
number of bits in a neural network

Figure 2.  	Blocking of four FP9 floating point values to int5bfp. The "1" in the left-most mantissa positions is the implicit 1 in 
floating-point format made explicit prior to conversion. Sign + mantissa bits are now in sign + magnitude integer format
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1 Some examples of natively supported numeric formats by Intel® FPGAs: 18-bit integer and FP32 on Intel® Arria® 10 FPGA  
[3][4]; int8, FP16, and bfloat16 on Intel® Agilex™ FPGA [5], and int4 and int8 tensor block on Intel® Stratix® 10 NX FPGA [6].
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Figure 3.  	Packing 6x6 bit (int7bfp) or 4x3 bit (int5/4bfp) 
multipliers into an Intel Arria 10 FPGA 18 bit 
multiplier

Many of the high parameter networks – the ResNets, 
Inception, VGG-based SSDs – quantize well to int8bfp and 
even int7bfp without any additional intervention, as shown 
in Table 1, where green highlights indicate a minimal loss of 
accuracy from the original FP32 model.

As expected, the drop in accuracy from applying quantization 
is more perceptible at very low precisions. This effect is 
exaggerated in the more modern, compact networks such as 
MobileNet and EfficientNet, which experience some accuracy 
drop even at higher precisions.

Fortunately, this penalty can be reversed easily. As few as four 
epochs of retraining – or a dozen for the more challenging 
networks – can recover the model’s accuracy. Where this 

As already seen, the number of bits implicated in low 
precision quantization is much reduced from the original 
single precision implementation. This has a large knock-on 
effect on hardware resources. For instance, the 18 bit input 
hardened multipliers in an Intel® Arria® 10 FPGA (represented 
in Figure 3) can be used to implement a single 18 bit x 18 bit 
multiply, two 6 bit x 6 bit multiplies, or four 4 bit x 3 bit. 

Pushing the sign bit into external logic therefore, it is 
possible to halve the number of DSP blocks used at int12bfp 
(equivalent to blocked FP16) by quantizing to a 7 bit mantissa 
(int7bfp) and halve it again using a 5 bit x 4 bit (int5/4bfp) 
configuration. These savings can be utilized to scale back the 
hardware footprint or increase throughput.

BFP for High Inference Accuracy

BFP to Significantly Cut Resource Count
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Why Block Floating Point?

•	 Small resource footprint

•	 Excellent compatibility with Intel® FPGA DSP blocks

•	 High dynamic range models weights and activations 
well at low precisions

•	 Simplicity in training: no parameter initialization

Table 1.  	 Indicative Top-1 accuracies for networks both with and without retraining, at int5/4bfp (int5bfp activations and int4bpf 
weights), int7bfp and int8bfp – all at block size 32. n/a shows where retraining is not required
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is insufficient, it is possible for the FPGA to accommodate 
an increase in the activation bit width for specific layers. 
Algorithmic techniques are available to determine and retrain 
a network to account for these changes in precision (see 
section on Mixed Precision below).

Int5/4bfp Int7bfp Int8bfp

Network FP32 accuracy 
reference (%)

Accuracy 
(%) without 

retraining

Accuracy  
(%) with 

retraining

Accuracy 
(%) without 

retraining

Accuracy  
(%) with 

retraining

Accuracy 
(%) without 

retraining

Accuracy  
(%) with 

retraining

Classification (ImageNet)

ResNet-18 69.76 55.69 69.13 69.67 n/a 69.60 n/a

ResNet-34 73.31 65.09 72.81 72.94 n/a 73.09 n/a

ResNet-50 76.13 60.32 75.60 75.75 n/a 75.95 n/a

Inception v3 77.32 32.70 78.34 77.11 n/a 77.31 n/a

EfficientNet_b0 75.86 0.34 71.96 64.37 75.45 70.48 75.47

MobileNet v2 71.81 6.00 68.99 67.28 71.65 71.12 n/a

SqueezeNet v1.1 58.18 33.09 54.90 57.73 58.15 58.10 n/a

Object Detection (VOC 2007 & 2012)

SSD300 78.12 73.64 77.92 78.09 n/a 78.08 n/a

SSD512 80.26 74.72 80.00 80.19 n/a 80.08 n/a

Object Detection (COCO 2017)

TinyYOLO v3 35.7 26.90 31.40 35.50 n/a 35.60 n/a

Semantic Segmentation (CamVid)

UNet 71.95 63.95 72.36 71.66 n/a 71.89 n/a

ICNet 67.89 59.66 67.09 67.88 n/a 67.87 n/a

Blue 	 : Full precision accuracy
Green 	 : Achieves quantization accuracy within 1 percentage point of the full precision accuracy
Amber 	 : Achieves quantization accuracy within around 5 percentage points of the full precision accuracy
Red	 : Achieves quantization accuracy significantly lower than full precision accuracy
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Figure 4.  	Resource count ratios and frame rate for ResNet 50 
and MobileNet v2 inference at block size 32

Figure 5.  	Resource count ratios and frame rate for ResNet 50 
and MobileNet v2 inference at block size 16

Figure 6.  	Resource count and accuracy for MobileNet v2 
inference at 30 fps with block size 8

As seen, simply by reducing the precision, the associated 
numbers of ALMs and RAM blocks roughly follow the pattern 
seen in DSP block usage. This is amplified by decreasing the 
block size, which – while limiting throughput – compounds 
the benefits in the footprint. It is worth noting that doubling 
the number of hardware instances doubles the throughput 
— potentially useful in the case of multiple input streams or 
requirements for redundancy in the system.
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Meaningful examples mirror real-life applications, which 
tend to employ variations of standard networks. As 
typical benchmarks, ResNet 50 and MobileNet v2 are used 
throughout this section to give an idea of the effects of 
quantization. The reference is int12bfp which is a good proxy 
for single precision in this context owing to the negligible 
accuracy loss from downsizing.

Simply by reducing the precision, the associated numbers 
of Adaptive Logic Modules (ALMs) and RAM blocks roughly 
follow the pattern seen in multiplier usage. This reduction 
is reflected in the number of DSP blocks and amplified 
by decreasing the block size, which – while limiting the 
throughput – has additional benefits for the footprint. 

Also worthy of note is that the choice of network makes 
a big difference to the frame rate, with the much smaller 
MobileNet v2 attaining around twice the frame rate of ResNet 
50 for the same footprint.

In the following figures, the baseline footprint (indicated in 
the leftmost columns of Figure 4) at int12bfp and block size 
32 is:

•	 816 M20K RAM blocks

•	 551 DSP blocks

•	 39,315 ALMs

In Figure 4, reductions in footprint result directly from 
reduced precision. With a single bitstream for both ResNet 
50 and MobileNet v2, it is interesting to note the difference in 
frame rate.
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Optimizing further, halving the block size leads to even 
greater savings. In Figure 5, while frame rate is halved for 
MobileNet v2 and reduced by two thirds for ResNet 50, using 
block size 16 halves RAM utilization and reduces the DSP 
block usage by two thirds.

An additional indication of available trade-offs is given in 
Figure 6.  A realistic application may well use MobileNet v2 
at a frame rate of 30 frames per second (fps). In this case, a 
block size of 8 is sufficient to fulfill the criteria which results 
in the use of 103 M20K RAM blocks, 31 DSP blocks and 
12,635 ALMs at int5/4bfp.
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Mixed Precision – The Advantages of Very Low 
Precisions with the Accuracy of Higher 
Precisions

Conclusion

Finally, for those situations where low precision quantization 
and retraining provides an unacceptable loss in accuracy, 
certain modes of mixed precision exist that have a 
cumulatively positive effect. These include “layer type” 
precision changes to incorporate higher precision hardware 
kernels, say for depthwise convolutions, and per-layer tensor 
precision doubling.

Although distinguishing different layer types is 
straightforward, accuracy uplift — much like training the 
original network — is determined by exploratory testing. 
This can be mitigated by using algorithms such as Hessian 
Aware Quantization (HAWQ), that determine the sensitivity 
of each convolutional layer to quantization. Each layer can be 
identified and the bit width of the weights, the activations or 
both can be doubled accordingly in retraining. In hardware, 
this augmentation can easily be effected by multiple passes 
through the PE array [8]. 

Figure 7 shows the results of training MobileNet v2 at BFP 
precisions determined by HAWQ. There is built-in flexibility to 
specify what proportion of the parameters in the convolution 
layers are doubled.

Many AI applications have stringent requirements that are 
complicated by additional functions needing to be in-lined, 
such as I/O, clipping, scaling, and dewarp. A big advantage of 
FPGAs is that these can be included as intellectual property 
(IP) cores on the same chip and combined as building 
blocks. While the functions themselves may claim heavy 
resource usage, the flexibility provided to neural network 
engines by BFP quantization can reduce the IP footprint 
and help to meet other specifications such as throughput or 
performance.

BFP quantization works very well on FPGAs due to the ability 
to pack integers of certain sizes efficiently into the DSP 
blocks, which very easily allows the footprint reductions 
shown on the previous page. A 50% reduction in DSP 
block usage is achieved simply by reducing the precision to 
int7bfp. This is replicated on a further precision reduction 
to int5/4bfp. Other logic elements follow a similar pattern 
of usage reduction. From here, changing the block size or 
repeating instantiations of the hardware enables tuning of 
the frame rate.

A further benefit of BFP quantization is its ability to store 
more network graphs in DDR. With a greater number of 
parameters available on-chip, the time and power to change 
from one graph to another reduces, enabling high-speed 
switching for different types of inference.

Where accuracy is concerned, BFP has a high dynamic range 
that is modifiable via the block size. This makes it very adept 
at retraining, even at very low precisions. A default block size 
of 32 is sufficient to allow older, larger networks to quantize 
at int7bfp without retraining (specifically ResNet, SqueezeNet, 
VVG-SSDs, TinyYOLO, UNet and ICNet). On newer, leaner 
topologies such as the MobileNets and EfficientNet, the 
resultant drop from quantization can be overcome with a 
few epochs of retraining. At precisions lower than int7bfp, 
these leaner networks still achieve good accuracy by enable 
precision-doubling for select critical layers.

The software model has several benefits. In addition to 
providing a neural network training facility, it allows:

•	 Testing the effects on accuracy of quantization before 
implementation

•	 Retraining to recoup accuracy lost through low precision 
quantization

•	 The ability to trial mixed precision configurations and 
higher precision kernels before building in hardware

All three points save a significant amount of time in 
speculative bitstream compilation and hardware engineering.

In summary, quantization is an easy way to significantly 
reduce hardware footprint while maintaining frame rate and 
keeping accuracy loss to a minimum.
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Figure 7.  	Accuracies achieved with mixed precision layers on 
MobileNet v2 with a base of int5/4bfp. Percentage 
figures show proportion of convolution layer 
parameters doubled
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